Newer
Older
#include <config.h>
#include <dune/grid/onedgrid.hh>
#include <dune/grid/uggrid.hh>
#include <dune/istl/io.hh>
#include <dune/grid/io/file/amirameshreader.hh>
#include <dune/grid/io/file/amirameshwriter.hh>
#include <dune/solvers/iterationsteps/multigridstep.hh>
#include <dune/solvers/solvers/loopsolver.hh>
#include <dune/solvers/iterationsteps/projectedblockgsstep.hh>
#include <dune/solvers/solvers/quadraticipopt.hh>
#include <dune/fufem/readbitfield.hh>
#include <dune/solvers/norms/energynorm.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/prolongboundarypatch.hh>
#include <dune/fufem/sampleonbitfield.hh>
#include <dune/fufem/neumannassembler.hh>
#include <dune/fufem/computestress.hh>
#include <dune/fufem/functionspacebases/q1nodalbasis.hh>
#include <dune/fufem/assemblers/operatorassembler.hh>
#include <dune/fufem/assemblers/localassemblers/stvenantkirchhoffassembler.hh>
#include <dune/gfe/quaternion.hh>
#include <dune/gfe/rodassembler.hh>
#include <dune/gfe/rigidbodymotion.hh>
#include <dune/gfe/averageinterface.hh>
#include <dune/gfe/riemanniantrsolver.hh>
#include <dune/gfe/geodesicdifference.hh>
#include <dune/gfe/rodwriter.hh>
#include <dune/gfe/makestraightrod.hh>
// Space dimension
const int dim = 3;
using namespace Dune;
using std::string;
using std::vector;
// Some types that I need
//typedef BCRSMatrix<FieldMatrix<double, dim, dim> > OperatorType;
//typedef BlockVector<FieldVector<double, dim> > VectorType;
typedef vector<RigidBodyMotion<dim> > RodSolutionType;
typedef BlockVector<FieldVector<double, 6> > RodDifferenceType;

Oliver Sander
committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
template <class GridView, class MatrixType, class VectorType>
class LinearizedContinuumNeumannToDirichletMap
{
public:
/** \brief Constructor
*
*/
LinearizedContinuumNeumannToDirichletMap(const BoundaryPatchBase<GridView>& interface,
const VectorType& weakVolumeAndNeumannTerm,
const VectorType& dirichletValues,
const LinearLocalAssembler<typename GridView::Grid,
typename P1NodalBasis<GridView,double>::LocalFiniteElement,
typename P1NodalBasis<GridView,double>::LocalFiniteElement,
Dune::FieldMatrix<double,3,3> >* localAssembler,
const shared_ptr<LoopSolver<VectorType> >& solver
)
: interface_(interface),
weakVolumeAndNeumannTerm_(weakVolumeAndNeumannTerm),
dirichletValues_(dirichletValues),
solver_(solver),
localAssembler_(localAssembler)
{}
/** \brief Map a Neumann value to a Dirichlet value
*
* \param currentIterate The continuum configuration that we are linearizing about
*
* \return The averaged Dirichlet value
*/
RigidBodyMotion<3> apply(const VectorType& currentIterate,
const Dune::FieldVector<double,3>& force,
const Dune::FieldVector<double,3>& torque,
const Dune::FieldVector<double,3>& centerOfTorque
)
{
////////////////////////////////////////////////////
// Assemble the linearized problem
////////////////////////////////////////////////////
/** \todo We are actually assembling standard linear elasticity,
* i.e. the linearization at zero
*/
typedef P1NodalBasis<GridView,double> P1Basis;
P1Basis basis(interface_.gridView());
OperatorAssembler<P1Basis,P1Basis> assembler(basis, basis);
MatrixType stiffnessMatrix;
assembler.assemble(*localAssembler_, stiffnessMatrix);
/////////////////////////////////////////////////////////////////////
// Turn the input force and torque into a Neumann boundary field
/////////////////////////////////////////////////////////////////////
VectorType neumannValues(stiffnessMatrix.N());
neumannValues = 0;
//
computeAveragePressure<GridView>(force, torque,
interface_,
centerOfTorque,
neumannValues);
// The weak form of the Neumann data
VectorType rhs = weakVolumeAndNeumannTerm_;
assembleAndAddNeumannTerm<GridView, VectorType>(interface_,
neumannValues,
rhs);
// Solve the Neumann problem for the continuum
VectorType x = dirichletValues_;
assert( (dynamic_cast<LinearIterationStep<MatrixType,VectorType>* >(solver_->iterationStep_)) );
dynamic_cast<LinearIterationStep<MatrixType,VectorType>* >(solver_->iterationStep_)->setProblem(stiffnessMatrix, x, rhs);
//solver.preprocess();
solver_->iterationStep_->preprocess();
solver_->solve();
x = solver_->iterationStep_->getSol();
std::cout << "x:\n" << x << std::endl;
// Average the continuum displacement on the coupling boundary
RigidBodyMotion<3> averageInterface;
computeAverageInterface(interface_, x, averageInterface);
std::cout << "Average interface: " << averageInterface << std::endl;
return averageInterface;
}
private:
const VectorType& weakVolumeAndNeumannTerm_;
const VectorType& dirichletValues_;
const shared_ptr<LoopSolver<VectorType> > solver_;
const BoundaryPatchBase<GridView>& interface_;
const LinearLocalAssembler<typename GridView::Grid,
typename P1NodalBasis<GridView,double>::LocalFiniteElement,
typename P1NodalBasis<GridView,double>::LocalFiniteElement,
Dune::FieldMatrix<double,3,3> >* localAssembler_;
};
int main (int argc, char *argv[]) try
{
// Some types that I need
typedef BCRSMatrix<FieldMatrix<double, dim, dim> > MatrixType;
typedef BlockVector<FieldVector<double, dim> > VectorType;
// parse data file
ConfigParser parameterSet;

Oliver Sander
committed
if (argc==2)
parameterSet.parseFile(argv[1]);
else
parameterSet.parseFile("dirneucoupling.parset");
const int numLevels = parameterSet.get<int>("numLevels");
string ddType = parameterSet.get<string>("ddType");
string preconditioner = parameterSet.get<string>("preconditioner");
const double ddTolerance = parameterSet.get<double>("ddTolerance");
const int maxDDIterations = parameterSet.get<int>("maxDirichletNeumannSteps");
const double damping = parameterSet.get<double>("damping");
const double trTolerance = parameterSet.get<double>("trTolerance");
const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps");
const int trVerbosity = parameterSet.get<int>("trVerbosity");
const int multigridIterations = parameterSet.get<int>("numIt");
const int nu1 = parameterSet.get<int>("nu1");
const int nu2 = parameterSet.get<int>("nu2");
const int mu = parameterSet.get<int>("mu");
const int baseIterations = parameterSet.get<int>("baseIt");
const double mgTolerance = parameterSet.get<double>("mgTolerance");
const double baseTolerance = parameterSet.get<double>("baseTolerance");
const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
string resultPath = parameterSet.get("resultPath", "");
string path = parameterSet.get<string>("path");
string objectName = parameterSet.get<string>("gridFile");
string dirichletNodesFile = parameterSet.get<string>("dirichletNodes");
string dirichletValuesFile = parameterSet.get<string>("dirichletValues");
string interfaceNodesFile = parameterSet.get<string>("interfaceNodes");
const int numRodBaseElements = parameterSet.get<int>("numRodBaseElements");
double E = parameterSet.get<double>("E");
double nu = parameterSet.get<double>("nu");
// rod material parameters
double rodA = parameterSet.get<double>("rodA");
double rodJ1 = parameterSet.get<double>("rodJ1");
double rodJ2 = parameterSet.get<double>("rodJ2");
double rodE = parameterSet.get<double>("rodE");
double rodNu = parameterSet.get<double>("rodNu");
Dune::array<FieldVector<double,3>,2> rodRestEndPoint;
rodRestEndPoint[0][0] = parameterSet.get<double>("rodRestEndPoint0X");
rodRestEndPoint[0][1] = parameterSet.get<double>("rodRestEndPoint0Y");
rodRestEndPoint[0][2] = parameterSet.get<double>("rodRestEndPoint0Z");
rodRestEndPoint[1][0] = parameterSet.get<double>("rodRestEndPoint1X");
rodRestEndPoint[1][1] = parameterSet.get<double>("rodRestEndPoint1Y");
rodRestEndPoint[1][2] = parameterSet.get<double>("rodRestEndPoint1Z");
//////////////////////////////////////////////////////////////////
// Print the algorithm type so we have it in the log files
//////////////////////////////////////////////////////////////////
std::cout << "Algorithm: " << ddType << std::endl;
if (ddType=="RichardsonIteration")
std::cout << "Preconditioner: " << preconditioner << std::endl;
// ///////////////////////////////////////
// Create the rod grid
// ///////////////////////////////////////
RodGridType rodGrid(numRodBaseElements, 0, (rodRestEndPoint[1]-rodRestEndPoint[0]).two_norm());
// ///////////////////////////////////////
// Create the grid for the 3d object
// ///////////////////////////////////////
GridType grid;
grid.setRefinementType(GridType::COPY);
AmiraMeshReader<GridType>::read(grid, path + objectName);
// //////////////////////////////////////
// Globally refine grids
// //////////////////////////////////////
rodGrid.globalRefine(numLevels-1);
grid.globalRefine(numLevels-1);
std::vector<BitSetVector<dim> > dirichletNodes(1);
RodSolutionType rodX(rodGrid.size(1));
// //////////////////////////
// Initial solution
// //////////////////////////
makeStraightRod(rodX, rodGrid.size(1), rodRestEndPoint[0], rodRestEndPoint[1]);
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
rodX.back().r[0] = parameterSet.get("dirichletValueX", rodRestEndPoint[1][0]);
rodX.back().r[1] = parameterSet.get("dirichletValueY", rodRestEndPoint[1][1]);
rodX.back().r[2] = parameterSet.get("dirichletValueZ", rodRestEndPoint[1][2]);
FieldVector<double,3> axis;
axis[0] = parameterSet.get("dirichletAxisX", double(0));
axis[1] = parameterSet.get("dirichletAxisY", double(0));
axis[2] = parameterSet.get("dirichletAxisZ", double(0));
double angle = parameterSet.get("dirichletAngle", double(0));
rodX.back().q = Rotation<3,double>(axis, M_PI*angle/180);
// Backup initial rod iterate for later reference
RodSolutionType initialIterateRod = rodX;
int toplevel = rodGrid.maxLevel();
// /////////////////////////////////////////////////////
// Determine the Dirichlet nodes
// /////////////////////////////////////////////////////
std::vector<VectorType> dirichletValues;
dirichletValues.resize(toplevel+1);
dirichletValues[0].resize(grid.size(0, dim));
AmiraMeshReader<int>::readFunction(dirichletValues[0], path + dirichletValuesFile);
std::vector<LevelBoundaryPatch<GridType> > dirichletBoundary;
dirichletBoundary.resize(numLevels);
dirichletBoundary[0].setup(grid, 0);
readBoundaryPatch(dirichletBoundary[0], path + dirichletNodesFile);
PatchProlongator<GridType>::prolong(dirichletBoundary);
dirichletNodes.resize(toplevel+1);
for (int i=0; i<=toplevel; i++) {
dirichletNodes[i].resize( grid.size(i,dim));
dirichletNodes[i][j] = dirichletBoundary[i].containsVertex(j);
sampleOnBitField(grid, dirichletValues, dirichletNodes);
// /////////////////////////////////////////////////////
// Determine the interface boundary
// /////////////////////////////////////////////////////
std::vector<LevelBoundaryPatch<GridType> > interfaceBoundary;
interfaceBoundary.resize(numLevels);
interfaceBoundary[0].setup(grid, 0);
readBoundaryPatch(interfaceBoundary[0], path + interfaceNodesFile);
PatchProlongator<GridType>::prolong(interfaceBoundary);
// //////////////////////////////////////////
// Assemble 3d linear elasticity problem
// //////////////////////////////////////////

Oliver Sander
committed
typedef P1NodalBasis<GridType::LeafGridView,double> FEBasis;
FEBasis basis(grid.leafView());
OperatorAssembler<FEBasis,FEBasis> assembler(basis, basis);
StVenantKirchhoffAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> localAssembler(E, nu);
MatrixType stiffnessMatrix3d;
assembler.assemble(localAssembler, stiffnessMatrix3d);
// ////////////////////////////////////////////////////////////
// Create solution and rhs vectors
// ////////////////////////////////////////////////////////////
VectorType x3d(grid.size(toplevel,dim));
VectorType rhs3d(grid.size(toplevel,dim));
// No external forces
rhs3d = 0;
// Set initial solution
x3d = 0;
for (int i=0; i<x3d.size(); i++)
for (int j=0; j<dim; j++)
x3d[i][j] = dirichletValues[toplevel][i][j];
// ///////////////////////////////////////////
// Dirichlet nodes for the rod problem
// ///////////////////////////////////////////
BitSetVector<6> rodDirichletNodes(rodGrid.size(1));
rodDirichletNodes.unsetAll();
rodDirichletNodes[0] = true;
rodDirichletNodes.back() = true;
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RodLocalStiffness<RodGridType::LeafGridView,double> rodLocalStiffness(rodGrid.leafView(),
rodA, rodJ1, rodJ2, rodE, rodNu);
RodAssembler<RodGridType::LeafGridView,3> rodAssembler(rodGrid.leafView(), &rodLocalStiffness);
RiemannianTrustRegionSolver<RodGridType,RigidBodyMotion<3> > rodSolver;
rodSolver.setup(rodGrid,
&rodAssembler,
rodX,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
mu, nu1, nu2,
baseIterations,
switch (trVerbosity) {
case 0:
rodSolver.verbosity_ = Solver::QUIET; break;
case 1:
rodSolver.verbosity_ = Solver::REDUCED; break;
default:
rodSolver.verbosity_ = Solver::FULL; break;
}
// ////////////////////////////////
// Create a multigrid solver
// ////////////////////////////////
// First create a gauss-seidel base solver
#ifdef HAVE_IPOPT
QuadraticIPOptSolver<MatrixType,VectorType> baseSolver;
#endif
baseSolver.verbosity_ = NumProc::QUIET;
baseSolver.tolerance_ = baseTolerance;
BlockGSStep<MatrixType, VectorType> presmoother, postsmoother;
MultigridStep<MatrixType, VectorType> multigridStep(stiffnessMatrix3d, x3d, rhs3d, 1);
multigridStep.setMGType(mu, nu1, nu2);
multigridStep.ignoreNodes_ = &dirichletNodes.back();
multigridStep.basesolver_ = &baseSolver;
multigridStep.setSmoother(&presmoother, &postsmoother);
EnergyNorm<MatrixType, VectorType> energyNorm(multigridStep);

Oliver Sander
committed
shared_ptr<LoopSolver<VectorType> > solver = shared_ptr<LoopSolver<VectorType> >( new LoopSolver<VectorType>(&multigridStep,
// IPOpt doesn't like to be started in the solution
(numLevels!=1) ? multigridIterations : 1,
mgTolerance,
&energyNorm,
Solver::QUIET) );
// ////////////////////////////////////
// Create the transfer operators
// ////////////////////////////////////
for (int k=0; k<multigridStep.mgTransfer_.size(); k++)
delete(multigridStep.mgTransfer_[k]);
multigridStep.mgTransfer_.resize(toplevel);
for (int i=0; i<multigridStep.mgTransfer_.size(); i++){
CompressedMultigridTransfer<VectorType>* newTransferOp = new CompressedMultigridTransfer<VectorType>;
multigridStep.mgTransfer_[i] = newTransferOp;
}
// /////////////////////////////////////////////////////
// Dirichlet-Neumann Solver
// /////////////////////////////////////////////////////
// Init interface value
RigidBodyMotion<3> referenceInterface = rodX[0];
RigidBodyMotion<3> lambda = referenceInterface;
FieldVector<double,3> lambdaForce(0);
FieldVector<double,3> lambdaTorque(0);
int dnStepsActuallyTaken = 0;
for (int i=0; i<maxDDIterations; i++) {
std::cout << "----------------------------------------------------" << std::endl;
std::cout << " Domain-Decomposition- Step Number: " << i << std::endl;
std::cout << "----------------------------------------------------" << std::endl;
// Backup of the current solution for the error computation later on
VectorType oldSolution3d = x3d;
RodSolutionType oldSolutionRod = rodX;
RigidBodyMotion<3> averageInterface;
if (ddType=="FixedPointIteration") {
// //////////////////////////////////////////////////
// Dirichlet step for the rod
// //////////////////////////////////////////////////
rodX[0] = lambda;
rodSolver.setInitialSolution(rodX);
rodSolver.solve();
rodX = rodSolver.getSol();
// for (int j=0; j<rodX.size(); j++)
// std::cout << rodX[j] << std::endl;
// ///////////////////////////////////////////////////////////
// Extract Neumann values and transfer it to the 3d object
// ///////////////////////////////////////////////////////////
BitSetVector<1> couplingBitfield(rodX.size(),false);
// Using that index 0 is always the left boundary for a uniformly refined OneDGrid
couplingBitfield[0] = true;
LeafBoundaryPatch<RodGridType> couplingBoundary(rodGrid, couplingBitfield);
FieldVector<double,dim> resultantForce, resultantTorque;
resultantForce = rodAssembler.getResultantForce(couplingBoundary, rodX, resultantTorque);
// Flip orientation
resultantForce *= -1;
resultantTorque *= -1;

Oliver Sander
committed
std::cout << "resultant force: " << resultantForce << std::endl;
std::cout << "resultant torque: " << resultantTorque << std::endl;
VectorType neumannValues(rhs3d.size());

Oliver Sander
committed
// Using that index 0 is always the left boundary for a uniformly refined OneDGrid

Oliver Sander
committed
computeAveragePressure<GridType::LevelGridView>(resultantForce, resultantTorque,

Oliver Sander
committed
interfaceBoundary[grid.maxLevel()],
rodX[0].r,

Oliver Sander
committed
neumannValues);
rhs3d = 0;
assembleAndAddNeumannTerm<GridType::LevelGridView, VectorType>(interfaceBoundary[grid.maxLevel()],

Oliver Sander
committed
neumannValues,
rhs3d);
// ///////////////////////////////////////////////////////////
// Solve the Neumann problem for the continuum
// ///////////////////////////////////////////////////////////
multigridStep.setProblem(stiffnessMatrix3d, x3d, rhs3d, grid.maxLevel()+1);

Oliver Sander
committed
solver->preprocess();
multigridStep.preprocess();

Oliver Sander
committed
solver->solve();
x3d = multigridStep.getSol();
// ///////////////////////////////////////////////////////////
// Extract new interface position and orientation
// ///////////////////////////////////////////////////////////
computeAverageInterface(interfaceBoundary[toplevel], x3d, averageInterface);
//averageInterface.r[0] = averageInterface.r[1] = 0;
//averageInterface.q = Quaternion<double>::identity();
std::cout << "average interface: " << averageInterface << std::endl;
std::cout << "director 0: " << averageInterface.q.director(0) << std::endl;
std::cout << "director 1: " << averageInterface.q.director(1) << std::endl;
std::cout << "director 2: " << averageInterface.q.director(2) << std::endl;
std::cout << std::endl;
} else if (ddType=="RichardsonIteration") {
///////////////////////////////////////////////////////////////////
// One preconditioned Richardson step
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// Evaluate the Dirichlet-to-Neumann map for the rod
///////////////////////////////////////////////////////////////////
// solve a Dirichlet problem for the rod
rodX[0] = lambda;
rodSolver.setInitialSolution(rodX);
rodSolver.solve();
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
rodX = rodSolver.getSol();
// Extract Neumann values
BitSetVector<1> couplingBitfield(rodX.size(),false);
// Using that index 0 is always the left boundary for a uniformly refined OneDGrid
couplingBitfield[0] = true;
LeafBoundaryPatch<RodGridType> couplingBoundary(rodGrid, couplingBitfield);
FieldVector<double,dim> resultantForce, resultantTorque;
resultantForce = rodAssembler.getResultantForce(couplingBoundary, rodX, resultantTorque);
// Flip orientation
resultantForce *= -1;
resultantTorque *= -1;
std::cout << "resultant force: " << resultantForce << std::endl;
std::cout << "resultant torque: " << resultantTorque << std::endl;
///////////////////////////////////////////////////////////////////
// Evaluate the Dirichlet-to-Neumann map for the continuum
///////////////////////////////////////////////////////////////////
// Turn \lambda \in TSE(3) into a Dirichlet value for the continuum
RigidBodyMotion<3> relativeMovement;
relativeMovement.r = lambda.r - referenceInterface.r;
relativeMovement.q = referenceInterface.q;
relativeMovement.q.invert();
relativeMovement.q = lambda.q.mult(relativeMovement.q);
setRotation(interfaceBoundary.back(), x3d, relativeMovement);
// Solve the Dirichlet problem
multigridStep.setProblem(stiffnessMatrix3d, x3d, rhs3d, grid.maxLevel()+1);

Oliver Sander
committed
solver->preprocess();
multigridStep.preprocess();

Oliver Sander
committed
solver->solve();
x3d = multigridStep.getSol();
// Integrate over the residual on the coupling boundary to obtain
// an element of T^*SE.
FieldVector<double,3> continuumForce, continuumTorque;
VectorType residual = rhs3d;
stiffnessMatrix3d.mmv(x3d,residual);
/** \todo Is referenceInterface.r the correct center of rotation? */

Oliver Sander
committed
computeTotalForceAndTorque(interfaceBoundary.back(), residual, referenceInterface.r,
continuumForce, continuumTorque);
///////////////////////////////////////////////////////////////
// Compute the overall Steklov-Poincare residual
///////////////////////////////////////////////////////////////
FieldVector<double,3> residualForce = resultantForce + continuumForce;
FieldVector<double,3> residualTorque = resultantTorque + continuumTorque;
///////////////////////////////////////////////////////////////
// Apply the preconditioner
///////////////////////////////////////////////////////////////
if (preconditioner=="DirichletNeumann") {
////////////////////////////////////////////////////////////////////
// Preconditioner is the linearized Neumann-to-Dirichlet map
// of the continuum.
////////////////////////////////////////////////////////////////////

Oliver Sander
committed
LinearizedContinuumNeumannToDirichletMap<GridType::LevelGridView,MatrixType,VectorType>
linContNtDMap(interfaceBoundary.back(),
rhs3d,
dirichletValues.back(),
&localAssembler,
solver);
averageInterface = linContNtDMap.apply(x3d, residualForce, residualTorque, rodX[0].r);
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
} else if (preconditioner=="NeumannDirichlet") {
////////////////////////////////////////////////////////////////////
// Preconditioner is the linearized Neumann-to-Dirichlet map
// of the rod.
////////////////////////////////////////////////////////////////////
DUNE_THROW(NotImplemented, "Neumann-Dirichlet preconditioner not implemented yet");
} else if (preconditioner=="NeumannNeumann") {
////////////////////////////////////////////////////////////////////
// Preconditioner is a convex combination of the linearized
// Neumann-to-Dirichlet map of the continuum and the linearized
// Neumann-to-Dirichlet map of the rod.
////////////////////////////////////////////////////////////////////
DUNE_THROW(NotImplemented, "Neumann-Neumann preconditioner not implemented yet");
} else if (preconditioner=="RobinRobin") {
DUNE_THROW(NotImplemented, "Robin-Robin preconditioner not implemented yet");
} else
DUNE_THROW(NotImplemented, preconditioner << " is not a known preconditioner");
} else
DUNE_THROW(NotImplemented, ddType << " is not a known domain decomposition algorithm");
//////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
for (int j=0; j<dim; j++)
lambda.r[j] = (1-damping) * lambda.r[j]
+ damping * (referenceInterface.r[j] + averageInterface.r[j]);
lambda.q = Rotation<3,double>::interpolate(lambda.q,
referenceInterface.q.mult(averageInterface.q),
std::cout << "Lambda: " << lambda << std::endl;
// ////////////////////////////////////////////////////////////////////////
// Write the two iterates to disk for later convergence rate measurement
// ////////////////////////////////////////////////////////////////////////
// First the 3d body
std::stringstream iAsAscii;
iAsAscii << i;
std::string iSolFilename = resultPath + "tmp/intermediate3dSolution_" + iAsAscii.str();
LeafAmiraMeshWriter<GridType> amiraMeshWriter;
amiraMeshWriter.addVertexData(x3d, grid.leafView());
amiraMeshWriter.write(iSolFilename);
iSolFilename = resultPath + "tmp/intermediateRodSolution_" + iAsAscii.str();
FILE* fpRod = fopen(iSolFilename.c_str(), "wb");
DUNE_THROW(SolverError, "Couldn't open file " << iSolFilename << " for writing");
for (int j=0; j<rodX.size(); j++) {
for (int k=0; k<dim; k++)
fwrite(&rodX[j].r[k], sizeof(double), 1, fpRod);
for (int k=0; k<4; k++) // 3d hardwired here!
fwrite(&rodX[j].q[k], sizeof(double), 1, fpRod);
}
fclose(fpRod);
// ////////////////////////////////////////////
// Compute error in the energy norm
// ////////////////////////////////////////////
// the 3d body
double oldNorm = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, stiffnessMatrix3d);
double normOfCorrection = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, stiffnessMatrix3d);
double max3dRelCorrection = 0;
for (size_t j=0; j<x3d.size(); j++)
for (int k=0; k<dim; k++)
max3dRelCorrection = std::max(max3dRelCorrection,
std::fabs(oldSolution3d[j][k])/ std::fabs(x3d[j][k]));
RodDifferenceType rodDiff = computeGeodesicDifference(oldSolutionRod, rodX);
double maxRodRelCorrection = 0;
for (size_t j=0; j<rodX.size(); j++)
for (int k=0; k<dim; k++)
maxRodRelCorrection = std::max(maxRodRelCorrection,
std::fabs(rodDiff[j][k])/ std::fabs(rodX[j].r[k]));
// Absolute corrections
double maxRodCorrection = computeGeodesicDifference(oldSolutionRod, rodX).infinity_norm();
double max3dCorrection = oldSolution3d.infinity_norm();
std::cout << "rod correction: " << maxRodCorrection
<< " rod rel correction: " << maxRodRelCorrection
<< " 3d correction: " << max3dCorrection
<< " 3d rel correction: " << max3dRelCorrection << std::endl;
oldNorm = std::sqrt(oldNorm);
normOfCorrection = std::sqrt(normOfCorrection);
double relativeError = normOfCorrection / oldNorm;
double convRate = normOfCorrection / normOfOldCorrection;
normOfOldCorrection = normOfCorrection;
// Output
std::cout << "DD iteration: " << i << " -- ||u^{n+1} - u^n|| / ||u^n||: " << relativeError << ", "
dnStepsActuallyTaken = i;
//if (relativeError < ddTolerance)
if (std::max(max3dRelCorrection,maxRodRelCorrection) < ddTolerance)
// //////////////////////////////////////////////////////////
// Recompute and compare against exact solution
// //////////////////////////////////////////////////////////
VectorType exactSol3d = x3d;
RodSolutionType exactSolRod = rodX;
// //////////////////////////////////////////////////////////
// Compute hessian of the rod functional at the exact solution
// for use of the energy norm it creates.
// //////////////////////////////////////////////////////////
BCRSMatrix<FieldMatrix<double, 6, 6> > hessianRod;
MatrixIndexSet indices(exactSolRod.size(), exactSolRod.size());
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessianRod);
rodAssembler.assembleMatrix(exactSolRod, hessianRod);
double error = std::numeric_limits<double>::max();
double oldError = 0;
VectorType intermediateSol3d(x3d.size());
RodSolutionType intermediateSolRod(rodX.size());
// Compute error of the initial 3d solution
// This should really be exactSol-initialSol, but we're starting
// from zero anyways
oldError += EnergyNorm<MatrixType,VectorType>::normSquared(exactSol3d, stiffnessMatrix3d);
// Error of the initial rod iterate
RodDifferenceType rodDifference = computeGeodesicDifference(initialIterateRod, exactSolRod);
oldError += EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod);
// Store the history of total conv rates so we can filter out numerical
// dirt in the end.
std::vector<double> totalConvRate(maxDDIterations+1);
double oldConvRate = 100;
bool firstTime = true;
std::stringstream levelAsAscii, dampingAsAscii;
levelAsAscii << numLevels;
dampingAsAscii << damping;
std::string filename = resultPath + "convrate_" + levelAsAscii.str() + "_" + dampingAsAscii.str();
for (i=0; i<dnStepsActuallyTaken; i++) {
// /////////////////////////////////////////////////////
// Read iteration from file
// /////////////////////////////////////////////////////
// Read 3d solution from file
std::stringstream iAsAscii;
iAsAscii << i;
std::string iSolFilename = resultPath + "tmp/intermediate3dSolution_" + iAsAscii.str();
AmiraMeshReader<int>::readFunction(intermediateSol3d, iSolFilename);
iSolFilename = resultPath + "tmp/intermediateRodSolution_" + iAsAscii.str();
FILE* fpInt = fopen(iSolFilename.c_str(), "rb");
if (!fpInt)
DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
for (int j=0; j<intermediateSolRod.size(); j++) {
fread(&intermediateSolRod[j].r, sizeof(double), dim, fpInt);
fread(&intermediateSolRod[j].q, sizeof(double), 4, fpInt);
}
fclose(fpInt);
// /////////////////////////////////////////////////////
// Compute error
// /////////////////////////////////////////////////////
VectorType solBackup0 = intermediateSol3d;
solBackup0 -= exactSol3d;
RodDifferenceType rodDifference = computeGeodesicDifference(exactSolRod, intermediateSolRod);
error = std::sqrt(EnergyNorm<MatrixType,VectorType>::normSquared(solBackup0, stiffnessMatrix3d)
EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod));
double convRate = error / oldError;
totalConvRate[i+1] = totalConvRate[i] * convRate;
// Output
std::cout << "DD iteration: " << i << " error : " << error << ", "
<< "convrate " << convRate
<< " total conv rate " << std::pow(totalConvRate[i+1], 1/((double)i+1)) << std::endl;
// Convergence rates tend to stay fairly constant after a few initial iterates.
// Only when we hit numerical dirt are they starting to wiggle around wildly.
// We use this to detect 'the' convergence rate as the last averaged rate before
// we hit the dirt.
if (convRate > oldConvRate + 0.1 && i > 5 && firstTime) {
std::cout << "Damping: " << damping
<< " convRate: " << std::pow(totalConvRate[i], 1/((double)i))
<< std::endl;
std::ofstream convRateFile(filename.c_str());
convRateFile << damping << " "
<< std::pow(totalConvRate[i], 1/((double)i))
<< std::endl;
firstTime = false;
}
if (error < 1e-12)
break;
oldError = error;
// Convergence without dirt: write the overall convergence rate now
if (firstTime) {
int backTrace = std::min(size_t(4),totalConvRate.size());
std::cout << "Damping: " << damping
<< " convRate: " << std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace))
<< std::endl;
std::ofstream convRateFile(filename.c_str());
convRateFile << damping << " "
<< std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace))
<< std::endl;
}
// //////////////////////////////
// Delete temporary memory
// //////////////////////////////
std::string removeTmpCommand = "rm -rf " + resultPath + "tmp/intermediate*";
system(removeTmpCommand.c_str());
// //////////////////////////////
// Output result
// //////////////////////////////

Oliver Sander
committed
LeafAmiraMeshWriter<GridType> amiraMeshWriter(grid);
amiraMeshWriter.addVertexData(x3d, grid.leafView());
Stress<GridType>::getStress(grid, x3d, stress, E, nu);
amiraMeshWriter.addCellData(stress, grid.leafView());
amiraMeshWriter.write(resultPath + "grid.result");

Oliver Sander
committed
writeRod(rodX, resultPath + "rod3d.result");
} catch (Exception e) {
std::cout << e << std::endl;
}