Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • s7603593/dune-microstructure
  • s7603593/dune-microstructure-backup
2 results
Show changes
Commits on Source (222)
Showing
with 822 additions and 0 deletions
# ignore all build folders
/build*/
build/
# ignore backup files
*~
# ignore python files
#*.pyc
# ignore pdfs
*.pdf
#ignore log
*.log
# ignore vts
*.vts
*.vtu
# ignore png
*.png
#ignore kdevelop files
*.kdev4
---
# Install external dependencies
before_script:
- duneci-install-module https://gitlab.dune-project.org/fufem/dune-matrix-vector.git
- duneci-install-module https://git.imp.fu-berlin.de/agnumpde/dune-solvers.git
- duneci-install-module https://gitlab.dune-project.org/fufem/dune-fufem.git
dune:2.9 debian-11 gcc-10 C++20:
variables:
DUNECI_BRANCH: releases/2.9
image: registry.dune-project.org/docker/ci/dune:2.9-debian-11-gcc-10-20
before_script:
script: duneci-standard-test
dune:git ubuntu-20-04 clang-10 C++20:
image: registry.dune-project.org/docker/ci/dune:git-ubuntu-20.04-clang-10-20
script: duneci-standard-test
dune:git debian-11 gcc-10 C++20:
image: registry.dune-project.org/docker/ci/dune:git-debian-11-gcc-10-20
script: duneci-standard-test
# We require CMake version 3.1 to prevent issues
# with dune_enable_all_packages and older CMake versions.
cmake_minimum_required(VERSION 3.1)
project(dune-microstructure CXX)
if(NOT (dune-common_DIR OR dune-common_ROOT OR
"${CMAKE_PREFIX_PATH}" MATCHES ".*dune-common.*"))
string(REPLACE ${CMAKE_PROJECT_NAME} dune-common dune-common_DIR
${PROJECT_BINARY_DIR})
endif()
#find dune-common and set the module path
find_package(dune-common REQUIRED)
list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake/modules"
${dune-common_MODULE_PATH})
#include the dune macros
include(DuneMacros)
# start a dune project with information from dune.module
dune_project()
dune_enable_all_packages()
add_subdirectory(src)
add_subdirectory(dune)
add_subdirectory(doc)
add_subdirectory(cmake/modules)
# finalize the dune project, e.g. generating config.h etc.
finalize_dune_project(GENERATE_CONFIG_H_CMAKE)
1. Define new material, prestrain and indicator function @ /dune/microstructure/materialDefinitions.hh
2. Add Case (Materialname) to "setupMaterial" method @ /dune/prestrainedMaterial.hh
3. set new materialname parameter @ /inputs/cellsolver.parset
1 1 -0.612883927868050238
1 2 -0.599999999999977551
1 3 -0.000197872958097770234
new_mat = spconvert(load('matlab.txt')); %Sparse Matrix type
new_mat = full(new_mat)
File added
clear all
clc
% status = system('mkdir mynew')
% command = './build-cmake/src/dune-microstructure ./inputs/cellsolver.parset';
% system(['set PATH=' '/home/klaus/Desktop/DUNE/dune-microstructure' ';' command ]);
% --- Change PolynomialDisplayStyle ----
% sympref('PolynomialDisplayStyle','ascend');
% sympref('AbbreviateOutput',false);
syms f_plus(v1,v2,q1,q2,q3,b1,b2,b3)
assume( q1 > 0)
assume( q2 > 0)
assume( q3 > 0)
assume( q3 >= q1)
assume( q2 >= q3)
v = [v1; v2];
%should be sqrt(2) instead of 2
fprintf('Functions to be minimized \n')
f_plus(v1,v2,q1,q2,q3,b1,b2,b3) = q1*v1^4 + q2*v2^4+2*q3*v1^2*v2^2-2*(q1*b1*v1^2+ q2*b2*v2^2+sqrt(2)*q3*b3*v1*v2);
f_minus(v1,v2,q1,q2,q3,b1,b2,b3) = q1*v1^4 + q2*v2^4+2*q3*v1^2*v2^2+2*(q1*b1*v1^2+ q2*b2*v2^2+sqrt(2)*q3*b3*v1*v2);
% ---- Fix parameters
absPath = "/home/klaus/Desktop/DUNE/dune-microstructure/outputs";
% 1. Import effective quantities from CellSolver-Code:
%read as sparse Matrix...
try %absolutePath
Qmat = spconvert(load(absPath + '' + "/QMatrix.txt"));
Bmat = spconvert(load(absPath + '' + "/BMatrix.txt"));
fprintf('Use absolute Path')
catch ME % use relativePath
Qmat = spconvert(load('../outputs/QMatrix.txt'));
Bmat = spconvert(load('../outputs/BMatrix.txt'));
fprintf('Use relative Path')
end
%convert to full matrix...
Qmat = full(Qmat)
Bmat = full(Bmat)
% Substitute effective quantitites
f_plus = subs(f_plus,q1,Qmat(1,1));
f_plus = subs(f_plus,q3,Qmat(3,3));
f_plus = subs(f_plus,q2,Qmat(2,2));
f_plus = subs(f_plus,b1,Bmat(1));
f_plus = subs(f_plus,b2,Bmat(2));
f_plus = subs(f_plus,b3,Bmat(3));
% f_plus = subs(f_plus,b3,0);
%
f_minus = subs(f_minus,q1,Qmat(1,1));
f_minus = subs(f_minus,q3,Qmat(3,3));
f_minus = subs(f_minus,q2,Qmat(2,2));
f_minus = subs(f_minus,b1,Bmat(1));
f_minus = subs(f_minus,b2,Bmat(2));
f_minus = subs(f_minus,b3,Bmat(3));
% % f_minus = subs(f_minus,b3,0);
% 2. Substitute specific values:
%%%Compare with 'ClassifyMin-Code'
% % Compare with 'ClassifyMin-Code'
% mu_1 = 1;
% rho_1 = 1;
% % --- type 1 Situation:
% % beta = 2;
% % alpha = 2;
% % theta = 1/4;
% % --- type 2 Situation:
% % beta = 3.0714;
% % alpha = -20;
% % theta = 0.3;
% % --- type 3 Situation:
% % beta = 2.2857;
% % alpha = -20;
% % theta = 0.3;
%
% % interesting:
% alpha = 18.3673;
% beta = 8.57143;
% theta= 0.913265;
%
% % alpha = 2.85714;
% % beta = 7;
% % theta= 0.3;
%
%
%
% set_mu_gamma = 'q1';
% % set_mu_gamma = 'q2';
% print_output = false;
%
% q1i = mu_1.*(beta./(theta+(1-theta).*beta))
% q2i = mu_1.*((1-theta)+theta.*beta)
% q3i = q1i
% % b1i = (mu_1*rho_1/4).*(beta./(theta+(1-theta).*beta)).*(1-theta.*(1+alpha))
% % b2i = mu_1.*(rho_1/8).*(1-theta.*(1+beta.*alpha))
% b3i = 0
%
% %TEST (new)
% b1i = (3*rho_1/2).*beta.*(1-theta.*(1+alpha));
% b2i = (3*rho_1/(4*((1-theta)+theta.*beta))).*(1-theta.*(1+beta.*alpha));
%
% f_plus = subs(f_plus,q1,q1i);
% f_plus = subs(f_plus,q3,q3i);
% f_plus = subs(f_plus,q2,q2i);
% f_plus = subs(f_plus,b1,b1i);
% f_plus = subs(f_plus,b2,b2i);
% f_plus = subs(f_plus,b3,b3i)
%
% f_minus = subs(f_minus,q1,q1i);
% f_minus = subs(f_minus,q3,q3i);
% f_minus = subs(f_minus,q2,q2i);
% f_minus = subs(f_minus,b1,b1i);
% f_minus = subs(f_minus,b2,b2i);
% f_minus = subs(f_minus,b3,b3i)
%
%
%
% [A,angle,V] = classifyMIN(mu_1,rho_1,alpha,beta,theta,set_mu_gamma,print_output)
% Substitute random values...
% rndm1 = randi([1 20],1,1);
% rndm2 = randi([1 20],1,1);
% rndm3 = randi([1 20],1,1);
% f_plus = subs(f_plus,b1,rndm1);
% f_plus = subs(f_plus,b2,rndm2);
% f_plus = subs(f_plus,b3,rndm3);
% Compute the Gradients
df_plusx = diff(f_plus,v1);
df_plusy = diff(f_plus,v2);
df_minusx = diff(f_minus,v1);
df_minusy = diff(f_minus,v2);
% Setup Equations Grad(f) = 0
eq1 = df_plusx == 0;
eq2 = df_plusy == 0;
eqns = [eq1, eq2];
eq3 = df_minusx == 0;
eq4 = df_minusy == 0;
eqns_minus = [eq3, eq4];
% Symbolically Solve Equations:
% More robust (works even for values b_3 ~ 1e-08 ):
S = solve(eqns,v1,v2,'MaxDegree' , 5);
S_minus = solve(eqns_minus,v1,v2,'MaxDegree' , 5);
%Tests:
% S = solve(eqns,v1,v2,'MaxDegree' , 5, 'Real', true);
% S_minus = solve(eqns_minus,v1,v2,'MaxDegree' , 5, 'Real', true);
% S = solve(eqns,v1,v2,'MaxDegree' , 5, 'IgnoreAnalyticConstraints',true);
% S = solve(eqns,v1,v2,'MaxDegree' , 5, 'IgnoreAnalyticConstraints',true, 'Real', true);
% S = solve(eqns)
A = S.v1;
B = S.v2;
A_minus = S_minus.v1;
B_minus = S_minus.v2;
% A = simplify(A);
% B = simplify(B)
%---------- TEST if Grad(f) = 0 ---------------------
% fprintf('Testing equation grad(f) = 0 with stationary points')
%
% for i = 1:size(A,1)
% fprintf('Testing %d.point (f_plus): ',i )
% [ double(subs(subs(df_plusx,v1,A(i)),v2,B(i))), double(subs(subs(df_plusy,v1,A(i)),v2,B(i))) ]
% end
% for i = 1:size(A_minus,1)
% fprintf('Testing %d.point (f_minus): ',i )
% [double(subs(subs(df_minusx,v1,A_minus(i)),v2,B_minus(i))), double(subs(subs(df_minusy,v1,A_minus(i)),v2,B_minus(i)))]
% end
% ------------------------------------
fprintf('stationary points of f_plus:')
A = double(A); %safe symbolic values
B = double(B);
fprintf('stationary points of f_minus:')
A_minus = double(A_minus);
B_minus = double(B_minus);
% Extract only Real-Solutions
fprintf('real stationary points of f_plus:')
tmp1 = A(imag(A)==0 & imag(B) == 0);
tmp2 = B(imag(A)==0 & imag(B) == 0);
A = tmp1;
B = tmp2;
% A(abs(imag(A)) <1e-3 & abs(imag(B)) <1e-3 )
SP_Plus = [A,B]
fprintf('real stationary points of f_minus:')
tmp1 = A_minus(imag(A_minus)==0 & imag(B_minus) == 0);
tmp2 = B_minus(imag(A_minus)==0 & imag(B_minus) == 0);
A_minus = tmp1;
B_minus = tmp2;
% A_minus(abs(imag(A_minus)) <1e-3 & abs(imag(B_minus)) <1e-3 )
SP_Minus = [A_minus,B_minus]
% Determine global Minimizer from stationary points:
fprintf('function values at stationary points (f_plus):')
T = arrayfun(@(v1,v2) double(f_plus(v1,v2,q1,q2,q3,b1,b2,b3)),A,B,'UniformOutput', false)
T = cell2mat(T);
% Min_plus = min(T, [], 'all')
[Min_plus,MinIdx_plus] = min(T, [], 'all', 'linear');
fprintf('function values at stationary points (f_minus):')
T_minus = arrayfun(@(v1,v2) double(f_minus(v1,v2,q1,q2,q3,b1,b2,b3)),A_minus,B_minus,'UniformOutput', false)
T_minus = cell2mat(T_minus);
% Min_minus = min(T_minus, [], 'all')
[Min_minus,MinIdx_minus] = min(T_minus, [], 'all', 'linear');
[globalMinimizerValue,GlobalIdx] = min([Min_plus,Min_minus]);
if GlobalIdx == 1 %Min_plus
GlobalMinimizer = SP_Plus(MinIdx_plus,:);
sign = 1.0;
elseif GlobalIdx == 2 %Min_minus
GlobalMinimizer = SP_Minus(MinIdx_minus,:);
sign = -1.0;
end
fprintf('Global Minimizer:(%d,%d)', GlobalMinimizer(1),GlobalMinimizer(2) )
fprintf('Global Minimizer Value : %d', globalMinimizerValue )
% Plot functions
fsurf(@(x,y) f_plus(x,y,q1,q2,q3,b1,b2,b3))
hold on
plot3(A,B,T,'g*')
%Plot GlobalMinimizer:
hold on
plot3(GlobalMinimizer(1),GlobalMinimizer(2),globalMinimizerValue, 'o', 'Color','c')
% view(90,0)
% view(2)
figure
fsurf(@(x,y) f_minus(x,y,q1,q2,q3,b1,b2,b3))
hold on
plot3(A_minus,B_minus,T_minus,'g*')
hold on
plot3(GlobalMinimizer(1),GlobalMinimizer(2),globalMinimizerValue, 'o', 'Color','c')
%Write to txt-File
fileID = fopen('txt.txt','w');
fprintf(fileID,'%s' , latex(S.v1));
fclose(fileID);
%%%Compare with 'ClassifyMin-Code'
fprintf('----------------compare with ClassifyMIN----------------')
fprintf('Output Minimizer Matrix from symbolic Minimization')
sign*GlobalMinimizer'*GlobalMinimizer %sign correct? should do this with symbolic Values! TODO
% GlobalMinimizer'*GlobalMinimizer
%check with higher Precision:
% vpa(GlobalMinimizer'*GlobalMinimizer)
% %
% % %Output from Classify Min:
% % [A,angle,type,K] = classifyMIN(mu_1,rho_1,alpha,beta,theta,set_mu_gamma,print_output);
% % fprintf('Output Minimizer Matrix from ClassifyMIN')
% %
% % % [A(1) sign*sqrt(A(1)*A(2)) ; sign*sqrt(A(1)*A(2)) A(2)] %sign correct?
% % [A(1) sqrt(A(1)*A(2)) ; sqrt(A(1)*A(2)) A(2)] %sign correct?
% %
% % %check with higher Precision:
% % % vpa([A(1) sqrt(A(1)*A(2)) ; sqrt(A(1)*A(2)) A(2)])
% %
% %
% % e = [sqrt(A(1)), sqrt(A(2))]; %TODO .. this might be complex?!
% %
% % norm = sqrt((A(1)+A(2)));
% %
% % e = e./norm;
% %
% % K*(e'*e)
% %
% % % e'*e
% % % K
% %
% % fprintf('angle: %d', angle)
% % fprintf('Type: %d', type)
%% Compare with "Task2"
% fprintf('----------------compare with Task2----------------')
%
% B = [b1i b3i; b3i b2i];
% x = 0:0.01:2*pi;
%
% y1 = arrayfun(@(alpha)compute_F(alpha,B,q1i,q2i,q3i),x,'UniformOutput', false);
% y1 = cell2mat(y1);
%
%
% figure
% plot(x,y1,'b')
% hold on
%
% fun = @(a) compute_F(a,B,q1i,q2i,q3i);
% [alphaMin,f] = fminunc(fun,0)
% [alphaMin,f] = fminunc(fun,3) % Different initial value
% plot(alphaMin,f,'*')
%
% %compute radius
% rMin = compute_r(alphaMin,B,q1i,q2i,q3i)
%
% %compute Minimizer:
% v_alpha = [cos(alphaMin);sin(alphaMin)];
%
%
%
% G = rMin.*(v_alpha*v_alpha')
%%Determine Minimizer Type (in general case)
% % T = [GlobalMinimizer' e1']
% % det(T) % also works?
% %
% %
% % % symbolically :
% %
% % if GlobalIdx == 1 %Min_plus
% % A_sym = S.v1;
% % B_sym = S.v2
% % Index = MinIdx_plus;
% % elseif GlobalIdx == 2 %Min_minus
% % A_sym = S_minus.v1;
% % B_sym = S_minus.v2;
% % Index = MinIdx_minus;
% % end
% %
% % % Check Determinant symbolically?!?!
% %
% % g_sym = [A_sym(Index) B_sym(Index)]
% % G_sym = g_sym'*g_sym
% %
% % e1 = [1 0];
% % e2 = [0 1];
% %
% % % check alignment with e1
% % % if ....
% % det([g_sym' e1'])
% % % ... bending in e1 direction
% % % check alignment with e2
% % % if..
% % det([g_sym' e2'])
% % double(det([g_sym' e2']))
% % % bending in e2 direction
% % %Else
% % %....
File added
File added
# state file generated using paraview version 5.7.0
# ----------------------------------------------------------------
# setup views used in the visualization
# ----------------------------------------------------------------
# trace generated using paraview version 5.7.0
#
# To ensure correct image size when batch processing, please search
# for and uncomment the line `# renderView*.ViewSize = [*,*]`
#### import the simple module from the paraview
from paraview.simple import *
#### disable automatic camera reset on 'Show'
paraview.simple._DisableFirstRenderCameraReset()
# Create a new 'Render View'
renderView1 = CreateView('RenderView')
renderView1.ViewSize = [964, 795]
renderView1.AxesGrid = 'GridAxes3DActor'
renderView1.CenterOfRotation = [20.0, 25.25, 19.999999225139618]
renderView1.StereoType = 'Crystal Eyes'
renderView1.CameraPosition = [19.716196756133453, -140.19818563854574, 19.725993950408547]
renderView1.CameraFocalPoint = [19.716196756133453, 4.1990335064686235, 19.725993950408554]
renderView1.CameraViewUp = [0.0, 0.0, 1.0]
renderView1.CameraFocalDisk = 1.0
renderView1.CameraParallelScale = 37.37275037457204
renderView1.Background = [0.32, 0.34, 0.43]
SetActiveView(None)
# ----------------------------------------------------------------
# setup view layouts
# ----------------------------------------------------------------
# create new layout object 'Layout #1'
layout1 = CreateLayout(name='Layout #1')
layout1.AssignView(0, renderView1)
# ----------------------------------------------------------------
# restore active view
SetActiveView(renderView1)
# ----------------------------------------------------------------
# ----------------------------------------------------------------
# setup the data processing pipelines
# ----------------------------------------------------------------
# create a new 'Legacy VTK Reader'
phaseDiagramvtk = LegacyVTKReader(FileNames=['/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs/PhaseDiagram.vtk'])
# create a new 'Legacy VTK Reader'
phaseDiagramvtk_1 = LegacyVTKReader(FileNames=['/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs/PhaseDiagram.vtk'])
# create a new 'Legacy VTK Reader'
phaseDiagramvtk_2 = LegacyVTKReader(FileNames=['/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs/PhaseDiagram.vtk'])
# create a new 'Legacy VTK Reader'
legacyVTKReader1 = LegacyVTKReader(FileNames=['/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs/wind.vtk'])
# create a new 'Transform'
transform1 = Transform(Input=phaseDiagramvtk_2)
transform1.Transform = 'Transform'
# init the 'Transform' selected for 'Transform'
transform1.Transform.Scale = [1.0, 1.0, 40.0]
# create a new 'Legacy VTK Reader'
phaseDiagramvtk_3 = LegacyVTKReader(FileNames=['/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs/PhaseDiagram.vtk'])
# create a new 'Legacy VTK Reader'
phaseDiagramvtk_4 = LegacyVTKReader(FileNames=['/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs/PhaseDiagram.vtk'])
# ----------------------------------------------------------------
# setup the visualization in view 'renderView1'
# ----------------------------------------------------------------
# show data from transform1
transform1Display = Show(transform1, renderView1)
# get color transfer function/color map for 'type'
typeLUT = GetColorTransferFunction('type')
typeLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.5332077132980828, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.8393082088494452, 0.48627450980392156, 0.0, 0.9725490196078431, 1.5502514522630406, 1.0, 0.5215686274509804, 0.9607843137254902, 2.4093082613015326, 1.0, 0.043137254901960784, 0.5529411764705883, 3.140000104904175, 1.0, 0.0, 0.01568627450980392]
typeLUT.ColorSpace = 'Lab'
typeLUT.NanColor = [0.0, 1.0, 0.0]
typeLUT.NumberOfTableValues = 593
typeLUT.ScalarRangeInitialized = 1.0
# get opacity transfer function/opacity map for 'type'
typePWF = GetOpacityTransferFunction('type')
typePWF.Points = [0.0, 1.0, 0.5, 0.0, 1.0269182920455933, 0.36764705181121826, 0.5, 0.0, 1.6292452668398216, 0.08088235557079315, 0.5, 0.0, 2.3500630855560303, 0.3602941334247589, 0.5, 0.0, 2.804276943206787, 0.6176470518112183, 0.5, 0.0, 3.140000104904175, 1.0, 0.5, 0.0]
typePWF.ScalarRangeInitialized = 1
# trace defaults for the display properties.
transform1Display.Representation = 'Points'
transform1Display.ColorArrayName = ['POINTS', 'type']
transform1Display.LookupTable = typeLUT
transform1Display.OSPRayScaleArray = 'type'
transform1Display.OSPRayScaleFunction = 'PiecewiseFunction'
transform1Display.SelectOrientationVectors = 'None'
transform1Display.ScaleFactor = 4.95
transform1Display.SelectScaleArray = 'type'
transform1Display.GlyphType = 'Arrow'
transform1Display.GlyphTableIndexArray = 'type'
transform1Display.GaussianRadius = 0.2475
transform1Display.SetScaleArray = ['POINTS', 'type']
transform1Display.ScaleTransferFunction = 'PiecewiseFunction'
transform1Display.OpacityArray = ['POINTS', 'type']
transform1Display.OpacityTransferFunction = 'PiecewiseFunction'
transform1Display.DataAxesGrid = 'GridAxesRepresentation'
transform1Display.PolarAxes = 'PolarAxesRepresentation'
transform1Display.ScalarOpacityFunction = typePWF
transform1Display.ScalarOpacityUnitDistance = 0.7474550074914409
# init the 'PiecewiseFunction' selected for 'OSPRayScaleFunction'
transform1Display.OSPRayScaleFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.213836476688135, 0.625, 0.5, 0.0, 1.3616352081298828, 0.6691176295280457, 0.5, 0.0, 1.6666333299996667, 0.8676470518112183, 0.5, 0.0, 1.7358490228652954, 0.6911764740943909, 0.5, 0.0, 2.0, 0.8014705777168274, 0.5, 0.0]
# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction'
transform1Display.ScaleTransferFunction.Points = [0.0, 0.8602941036224365, 0.5, 0.0, 0.6714465592330834, 0.625, 0.5, 0.0, 1.1355345914648751, 0.6691176295280457, 0.5, 0.0, 2.093228726131573, 0.8676470518112183, 0.5, 0.0, 2.310566008990662, 0.6911764740943909, 0.5, 0.0, 3.140000104904175, 0.8014705777168274, 0.5, 0.0]
# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction'
transform1Display.OpacityTransferFunction.Points = [0.0, 0.8602941036224365, 0.5, 0.0, 0.6714465592330834, 0.625, 0.5, 0.0, 1.1355345914648751, 0.6691176295280457, 0.5, 0.0, 2.093228726131573, 0.8676470518112183, 0.5, 0.0, 2.310566008990662, 0.6911764740943909, 0.5, 0.0, 3.140000104904175, 0.8014705777168274, 0.5, 0.0]
# setup the color legend parameters for each legend in this view
# get color legend/bar for typeLUT in view renderView1
typeLUTColorBar = GetScalarBar(typeLUT, renderView1)
typeLUTColorBar.Position = [0.8796680497925311, 0.01509433962264151]
typeLUTColorBar.Title = 'type'
typeLUTColorBar.ComponentTitle = ''
# set color bar visibility
typeLUTColorBar.Visibility = 1
# show color legend
transform1Display.SetScalarBarVisibility(renderView1, True)
# ----------------------------------------------------------------
# setup color maps and opacity mapes used in the visualization
# note: the Get..() functions create a new object, if needed
# ----------------------------------------------------------------
# ----------------------------------------------------------------
# finally, restore active source
SetActiveSource(phaseDiagramvtk_2)
# ----------------------------------------------------------------
\ No newline at end of file
# vtk DataFile Version 2.0
VTK from Matlab
ASCII
DATASET STRUCTURED_GRID
DIMENSIONS 1 30 30
POINTS 900 float
0.00 2.00 0.01 0.34 2.00 0.01 0.69 2.00 0.01 1.03 2.00 0.01 1.38 2.00 0.01 1.72 2.00 0.01 2.07 2.00 0.01 2.41 2.00 0.01 2.76 2.00 0.01 3.10 2.00 0.01 3.45 2.00 0.01 3.79 2.00 0.01 4.14 2.00 0.01 4.48 2.00 0.01 4.83 2.00 0.01 5.17 2.00 0.01 5.52 2.00 0.01 5.86 2.00 0.01 6.21 2.00 0.01 6.55 2.00 0.01 6.90 2.00 0.01 7.24 2.00 0.01 7.59 2.00 0.01 7.93 2.00 0.01 8.28 2.00 0.01 8.62 2.00 0.01 8.97 2.00 0.01 9.31 2.00 0.01 9.66 2.00 0.01 10.00 2.00 0.01 0.00 2.00 0.04 0.34 2.00 0.04 0.69 2.00 0.04 1.03 2.00 0.04 1.38 2.00 0.04 1.72 2.00 0.04 2.07 2.00 0.04 2.41 2.00 0.04 2.76 2.00 0.04 3.10 2.00 0.04 3.45 2.00 0.04 3.79 2.00 0.04 4.14 2.00 0.04 4.48 2.00 0.04 4.83 2.00 0.04 5.17 2.00 0.04 5.52 2.00 0.04 5.86 2.00 0.04 6.21 2.00 0.04 6.55 2.00 0.04 6.90 2.00 0.04 7.24 2.00 0.04 7.59 2.00 0.04 7.93 2.00 0.04 8.28 2.00 0.04 8.62 2.00 0.04 8.97 2.00 0.04 9.31 2.00 0.04 9.66 2.00 0.04 10.00 2.00 0.04 0.00 2.00 0.08 0.34 2.00 0.08 0.69 2.00 0.08 1.03 2.00 0.08 1.38 2.00 0.08 1.72 2.00 0.08 2.07 2.00 0.08 2.41 2.00 0.08 2.76 2.00 0.08 3.10 2.00 0.08 3.45 2.00 0.08 3.79 2.00 0.08 4.14 2.00 0.08 4.48 2.00 0.08 4.83 2.00 0.08 5.17 2.00 0.08 5.52 2.00 0.08 5.86 2.00 0.08 6.21 2.00 0.08 6.55 2.00 0.08 6.90 2.00 0.08 7.24 2.00 0.08 7.59 2.00 0.08 7.93 2.00 0.08 8.28 2.00 0.08 8.62 2.00 0.08 8.97 2.00 0.08 9.31 2.00 0.08 9.66 2.00 0.08 10.00 2.00 0.08 0.00 2.00 0.11 0.34 2.00 0.11 0.69 2.00 0.11 1.03 2.00 0.11 1.38 2.00 0.11 1.72 2.00 0.11 2.07 2.00 0.11 2.41 2.00 0.11 2.76 2.00 0.11 3.10 2.00 0.11 3.45 2.00 0.11 3.79 2.00 0.11 4.14 2.00 0.11 4.48 2.00 0.11 4.83 2.00 0.11 5.17 2.00 0.11 5.52 2.00 0.11 5.86 2.00 0.11 6.21 2.00 0.11 6.55 2.00 0.11 6.90 2.00 0.11 7.24 2.00 0.11 7.59 2.00 0.11 7.93 2.00 0.11 8.28 2.00 0.11 8.62 2.00 0.11 8.97 2.00 0.11 9.31 2.00 0.11 9.66 2.00 0.11 10.00 2.00 0.11 0.00 2.00 0.15 0.34 2.00 0.15 0.69 2.00 0.15 1.03 2.00 0.15 1.38 2.00 0.15 1.72 2.00 0.15 2.07 2.00 0.15 2.41 2.00 0.15 2.76 2.00 0.15 3.10 2.00 0.15 3.45 2.00 0.15 3.79 2.00 0.15 4.14 2.00 0.15 4.48 2.00 0.15 4.83 2.00 0.15 5.17 2.00 0.15 5.52 2.00 0.15 5.86 2.00 0.15 6.21 2.00 0.15 6.55 2.00 0.15 6.90 2.00 0.15 7.24 2.00 0.15 7.59 2.00 0.15 7.93 2.00 0.15 8.28 2.00 0.15 8.62 2.00 0.15 8.97 2.00 0.15 9.31 2.00 0.15 9.66 2.00 0.15 10.00 2.00 0.15 0.00 2.00 0.18 0.34 2.00 0.18 0.69 2.00 0.18 1.03 2.00 0.18 1.38 2.00 0.18 1.72 2.00 0.18 2.07 2.00 0.18 2.41 2.00 0.18 2.76 2.00 0.18 3.10 2.00 0.18 3.45 2.00 0.18 3.79 2.00 0.18 4.14 2.00 0.18 4.48 2.00 0.18 4.83 2.00 0.18 5.17 2.00 0.18 5.52 2.00 0.18 5.86 2.00 0.18 6.21 2.00 0.18 6.55 2.00 0.18 6.90 2.00 0.18 7.24 2.00 0.18 7.59 2.00 0.18 7.93 2.00 0.18 8.28 2.00 0.18 8.62 2.00 0.18 8.97 2.00 0.18 9.31 2.00 0.18 9.66 2.00 0.18 10.00 2.00 0.18 0.00 2.00 0.21 0.34 2.00 0.21 0.69 2.00 0.21 1.03 2.00 0.21 1.38 2.00 0.21 1.72 2.00 0.21 2.07 2.00 0.21 2.41 2.00 0.21 2.76 2.00 0.21 3.10 2.00 0.21 3.45 2.00 0.21 3.79 2.00 0.21 4.14 2.00 0.21 4.48 2.00 0.21 4.83 2.00 0.21 5.17 2.00 0.21 5.52 2.00 0.21 5.86 2.00 0.21 6.21 2.00 0.21 6.55 2.00 0.21 6.90 2.00 0.21 7.24 2.00 0.21 7.59 2.00 0.21 7.93 2.00 0.21 8.28 2.00 0.21 8.62 2.00 0.21 8.97 2.00 0.21 9.31 2.00 0.21 9.66 2.00 0.21 10.00 2.00 0.21 0.00 2.00 0.25 0.34 2.00 0.25 0.69 2.00 0.25 1.03 2.00 0.25 1.38 2.00 0.25 1.72 2.00 0.25 2.07 2.00 0.25 2.41 2.00 0.25 2.76 2.00 0.25 3.10 2.00 0.25 3.45 2.00 0.25 3.79 2.00 0.25 4.14 2.00 0.25 4.48 2.00 0.25 4.83 2.00 0.25 5.17 2.00 0.25 5.52 2.00 0.25 5.86 2.00 0.25 6.21 2.00 0.25 6.55 2.00 0.25 6.90 2.00 0.25 7.24 2.00 0.25 7.59 2.00 0.25 7.93 2.00 0.25 8.28 2.00 0.25 8.62 2.00 0.25 8.97 2.00 0.25 9.31 2.00 0.25 9.66 2.00 0.25 10.00 2.00 0.25 0.00 2.00 0.28 0.34 2.00 0.28 0.69 2.00 0.28 1.03 2.00 0.28 1.38 2.00 0.28 1.72 2.00 0.28 2.07 2.00 0.28 2.41 2.00 0.28 2.76 2.00 0.28 3.10 2.00 0.28 3.45 2.00 0.28 3.79 2.00 0.28 4.14 2.00 0.28 4.48 2.00 0.28 4.83 2.00 0.28 5.17 2.00 0.28 5.52 2.00 0.28 5.86 2.00 0.28 6.21 2.00 0.28 6.55 2.00 0.28 6.90 2.00 0.28 7.24 2.00 0.28 7.59 2.00 0.28 7.93 2.00 0.28 8.28 2.00 0.28 8.62 2.00 0.28 8.97 2.00 0.28 9.31 2.00 0.28 9.66 2.00 0.28 10.00 2.00 0.28 0.00 2.00 0.31 0.34 2.00 0.31 0.69 2.00 0.31 1.03 2.00 0.31 1.38 2.00 0.31 1.72 2.00 0.31 2.07 2.00 0.31 2.41 2.00 0.31 2.76 2.00 0.31 3.10 2.00 0.31 3.45 2.00 0.31 3.79 2.00 0.31 4.14 2.00 0.31 4.48 2.00 0.31 4.83 2.00 0.31 5.17 2.00 0.31 5.52 2.00 0.31 5.86 2.00 0.31 6.21 2.00 0.31 6.55 2.00 0.31 6.90 2.00 0.31 7.24 2.00 0.31 7.59 2.00 0.31 7.93 2.00 0.31 8.28 2.00 0.31 8.62 2.00 0.31 8.97 2.00 0.31 9.31 2.00 0.31 9.66 2.00 0.31 10.00 2.00 0.31 0.00 2.00 0.35 0.34 2.00 0.35 0.69 2.00 0.35 1.03 2.00 0.35 1.38 2.00 0.35 1.72 2.00 0.35 2.07 2.00 0.35 2.41 2.00 0.35 2.76 2.00 0.35 3.10 2.00 0.35 3.45 2.00 0.35 3.79 2.00 0.35 4.14 2.00 0.35 4.48 2.00 0.35 4.83 2.00 0.35 5.17 2.00 0.35 5.52 2.00 0.35 5.86 2.00 0.35 6.21 2.00 0.35 6.55 2.00 0.35 6.90 2.00 0.35 7.24 2.00 0.35 7.59 2.00 0.35 7.93 2.00 0.35 8.28 2.00 0.35 8.62 2.00 0.35 8.97 2.00 0.35 9.31 2.00 0.35 9.66 2.00 0.35 10.00 2.00 0.35 0.00 2.00 0.38 0.34 2.00 0.38 0.69 2.00 0.38 1.03 2.00 0.38 1.38 2.00 0.38 1.72 2.00 0.38 2.07 2.00 0.38 2.41 2.00 0.38 2.76 2.00 0.38 3.10 2.00 0.38 3.45 2.00 0.38 3.79 2.00 0.38 4.14 2.00 0.38 4.48 2.00 0.38 4.83 2.00 0.38 5.17 2.00 0.38 5.52 2.00 0.38 5.86 2.00 0.38 6.21 2.00 0.38 6.55 2.00 0.38 6.90 2.00 0.38 7.24 2.00 0.38 7.59 2.00 0.38 7.93 2.00 0.38 8.28 2.00 0.38 8.62 2.00 0.38 8.97 2.00 0.38 9.31 2.00 0.38 9.66 2.00 0.38 10.00 2.00 0.38 0.00 2.00 0.42 0.34 2.00 0.42 0.69 2.00 0.42 1.03 2.00 0.42 1.38 2.00 0.42 1.72 2.00 0.42 2.07 2.00 0.42 2.41 2.00 0.42 2.76 2.00 0.42 3.10 2.00 0.42 3.45 2.00 0.42 3.79 2.00 0.42 4.14 2.00 0.42 4.48 2.00 0.42 4.83 2.00 0.42 5.17 2.00 0.42 5.52 2.00 0.42 5.86 2.00 0.42 6.21 2.00 0.42 6.55 2.00 0.42 6.90 2.00 0.42 7.24 2.00 0.42 7.59 2.00 0.42 7.93 2.00 0.42 8.28 2.00 0.42 8.62 2.00 0.42 8.97 2.00 0.42 9.31 2.00 0.42 9.66 2.00 0.42 10.00 2.00 0.42 0.00 2.00 0.45 0.34 2.00 0.45 0.69 2.00 0.45 1.03 2.00 0.45 1.38 2.00 0.45 1.72 2.00 0.45 2.07 2.00 0.45 2.41 2.00 0.45 2.76 2.00 0.45 3.10 2.00 0.45 3.45 2.00 0.45 3.79 2.00 0.45 4.14 2.00 0.45 4.48 2.00 0.45 4.83 2.00 0.45 5.17 2.00 0.45 5.52 2.00 0.45 5.86 2.00 0.45 6.21 2.00 0.45 6.55 2.00 0.45 6.90 2.00 0.45 7.24 2.00 0.45 7.59 2.00 0.45 7.93 2.00 0.45 8.28 2.00 0.45 8.62 2.00 0.45 8.97 2.00 0.45 9.31 2.00 0.45 9.66 2.00 0.45 10.00 2.00 0.45 0.00 2.00 0.48 0.34 2.00 0.48 0.69 2.00 0.48 1.03 2.00 0.48 1.38 2.00 0.48 1.72 2.00 0.48 2.07 2.00 0.48 2.41 2.00 0.48 2.76 2.00 0.48 3.10 2.00 0.48 3.45 2.00 0.48 3.79 2.00 0.48 4.14 2.00 0.48 4.48 2.00 0.48 4.83 2.00 0.48 5.17 2.00 0.48 5.52 2.00 0.48 5.86 2.00 0.48 6.21 2.00 0.48 6.55 2.00 0.48 6.90 2.00 0.48 7.24 2.00 0.48 7.59 2.00 0.48 7.93 2.00 0.48 8.28 2.00 0.48 8.62 2.00 0.48 8.97 2.00 0.48 9.31 2.00 0.48 9.66 2.00 0.48 10.00 2.00 0.48 0.00 2.00 0.52 0.34 2.00 0.52 0.69 2.00 0.52 1.03 2.00 0.52 1.38 2.00 0.52 1.72 2.00 0.52 2.07 2.00 0.52 2.41 2.00 0.52 2.76 2.00 0.52 3.10 2.00 0.52 3.45 2.00 0.52 3.79 2.00 0.52 4.14 2.00 0.52 4.48 2.00 0.52 4.83 2.00 0.52 5.17 2.00 0.52 5.52 2.00 0.52 5.86 2.00 0.52 6.21 2.00 0.52 6.55 2.00 0.52 6.90 2.00 0.52 7.24 2.00 0.52 7.59 2.00 0.52 7.93 2.00 0.52 8.28 2.00 0.52 8.62 2.00 0.52 8.97 2.00 0.52 9.31 2.00 0.52 9.66 2.00 0.52 10.00 2.00 0.52 0.00 2.00 0.55 0.34 2.00 0.55 0.69 2.00 0.55 1.03 2.00 0.55 1.38 2.00 0.55 1.72 2.00 0.55 2.07 2.00 0.55 2.41 2.00 0.55 2.76 2.00 0.55 3.10 2.00 0.55 3.45 2.00 0.55 3.79 2.00 0.55 4.14 2.00 0.55 4.48 2.00 0.55 4.83 2.00 0.55 5.17 2.00 0.55 5.52 2.00 0.55 5.86 2.00 0.55 6.21 2.00 0.55 6.55 2.00 0.55 6.90 2.00 0.55 7.24 2.00 0.55 7.59 2.00 0.55 7.93 2.00 0.55 8.28 2.00 0.55 8.62 2.00 0.55 8.97 2.00 0.55 9.31 2.00 0.55 9.66 2.00 0.55 10.00 2.00 0.55 0.00 2.00 0.58 0.34 2.00 0.58 0.69 2.00 0.58 1.03 2.00 0.58 1.38 2.00 0.58 1.72 2.00 0.58 2.07 2.00 0.58 2.41 2.00 0.58 2.76 2.00 0.58 3.10 2.00 0.58 3.45 2.00 0.58 3.79 2.00 0.58 4.14 2.00 0.58 4.48 2.00 0.58 4.83 2.00 0.58 5.17 2.00 0.58 5.52 2.00 0.58 5.86 2.00 0.58 6.21 2.00 0.58 6.55 2.00 0.58 6.90 2.00 0.58 7.24 2.00 0.58 7.59 2.00 0.58 7.93 2.00 0.58 8.28 2.00 0.58 8.62 2.00 0.58 8.97 2.00 0.58 9.31 2.00 0.58 9.66 2.00 0.58 10.00 2.00 0.58 0.00 2.00 0.62 0.34 2.00 0.62 0.69 2.00 0.62 1.03 2.00 0.62 1.38 2.00 0.62 1.72 2.00 0.62 2.07 2.00 0.62 2.41 2.00 0.62 2.76 2.00 0.62 3.10 2.00 0.62 3.45 2.00 0.62 3.79 2.00 0.62 4.14 2.00 0.62 4.48 2.00 0.62 4.83 2.00 0.62 5.17 2.00 0.62 5.52 2.00 0.62 5.86 2.00 0.62 6.21 2.00 0.62 6.55 2.00 0.62 6.90 2.00 0.62 7.24 2.00 0.62 7.59 2.00 0.62 7.93 2.00 0.62 8.28 2.00 0.62 8.62 2.00 0.62 8.97 2.00 0.62 9.31 2.00 0.62 9.66 2.00 0.62 10.00 2.00 0.62 0.00 2.00 0.65 0.34 2.00 0.65 0.69 2.00 0.65 1.03 2.00 0.65 1.38 2.00 0.65 1.72 2.00 0.65 2.07 2.00 0.65 2.41 2.00 0.65 2.76 2.00 0.65 3.10 2.00 0.65 3.45 2.00 0.65 3.79 2.00 0.65 4.14 2.00 0.65 4.48 2.00 0.65 4.83 2.00 0.65 5.17 2.00 0.65 5.52 2.00 0.65 5.86 2.00 0.65 6.21 2.00 0.65 6.55 2.00 0.65 6.90 2.00 0.65 7.24 2.00 0.65 7.59 2.00 0.65 7.93 2.00 0.65 8.28 2.00 0.65 8.62 2.00 0.65 8.97 2.00 0.65 9.31 2.00 0.65 9.66 2.00 0.65 10.00 2.00 0.65 0.00 2.00 0.69 0.34 2.00 0.69 0.69 2.00 0.69 1.03 2.00 0.69 1.38 2.00 0.69 1.72 2.00 0.69 2.07 2.00 0.69 2.41 2.00 0.69 2.76 2.00 0.69 3.10 2.00 0.69 3.45 2.00 0.69 3.79 2.00 0.69 4.14 2.00 0.69 4.48 2.00 0.69 4.83 2.00 0.69 5.17 2.00 0.69 5.52 2.00 0.69 5.86 2.00 0.69 6.21 2.00 0.69 6.55 2.00 0.69 6.90 2.00 0.69 7.24 2.00 0.69 7.59 2.00 0.69 7.93 2.00 0.69 8.28 2.00 0.69 8.62 2.00 0.69 8.97 2.00 0.69 9.31 2.00 0.69 9.66 2.00 0.69 10.00 2.00 0.69 0.00 2.00 0.72 0.34 2.00 0.72 0.69 2.00 0.72 1.03 2.00 0.72 1.38 2.00 0.72 1.72 2.00 0.72 2.07 2.00 0.72 2.41 2.00 0.72 2.76 2.00 0.72 3.10 2.00 0.72 3.45 2.00 0.72 3.79 2.00 0.72 4.14 2.00 0.72 4.48 2.00 0.72 4.83 2.00 0.72 5.17 2.00 0.72 5.52 2.00 0.72 5.86 2.00 0.72 6.21 2.00 0.72 6.55 2.00 0.72 6.90 2.00 0.72 7.24 2.00 0.72 7.59 2.00 0.72 7.93 2.00 0.72 8.28 2.00 0.72 8.62 2.00 0.72 8.97 2.00 0.72 9.31 2.00 0.72 9.66 2.00 0.72 10.00 2.00 0.72 0.00 2.00 0.75 0.34 2.00 0.75 0.69 2.00 0.75 1.03 2.00 0.75 1.38 2.00 0.75 1.72 2.00 0.75 2.07 2.00 0.75 2.41 2.00 0.75 2.76 2.00 0.75 3.10 2.00 0.75 3.45 2.00 0.75 3.79 2.00 0.75 4.14 2.00 0.75 4.48 2.00 0.75 4.83 2.00 0.75 5.17 2.00 0.75 5.52 2.00 0.75 5.86 2.00 0.75 6.21 2.00 0.75 6.55 2.00 0.75 6.90 2.00 0.75 7.24 2.00 0.75 7.59 2.00 0.75 7.93 2.00 0.75 8.28 2.00 0.75 8.62 2.00 0.75 8.97 2.00 0.75 9.31 2.00 0.75 9.66 2.00 0.75 10.00 2.00 0.75 0.00 2.00 0.79 0.34 2.00 0.79 0.69 2.00 0.79 1.03 2.00 0.79 1.38 2.00 0.79 1.72 2.00 0.79 2.07 2.00 0.79 2.41 2.00 0.79 2.76 2.00 0.79 3.10 2.00 0.79 3.45 2.00 0.79 3.79 2.00 0.79 4.14 2.00 0.79 4.48 2.00 0.79 4.83 2.00 0.79 5.17 2.00 0.79 5.52 2.00 0.79 5.86 2.00 0.79 6.21 2.00 0.79 6.55 2.00 0.79 6.90 2.00 0.79 7.24 2.00 0.79 7.59 2.00 0.79 7.93 2.00 0.79 8.28 2.00 0.79 8.62 2.00 0.79 8.97 2.00 0.79 9.31 2.00 0.79 9.66 2.00 0.79 10.00 2.00 0.79 0.00 2.00 0.82 0.34 2.00 0.82 0.69 2.00 0.82 1.03 2.00 0.82 1.38 2.00 0.82 1.72 2.00 0.82 2.07 2.00 0.82 2.41 2.00 0.82 2.76 2.00 0.82 3.10 2.00 0.82 3.45 2.00 0.82 3.79 2.00 0.82 4.14 2.00 0.82 4.48 2.00 0.82 4.83 2.00 0.82 5.17 2.00 0.82 5.52 2.00 0.82 5.86 2.00 0.82 6.21 2.00 0.82 6.55 2.00 0.82 6.90 2.00 0.82 7.24 2.00 0.82 7.59 2.00 0.82 7.93 2.00 0.82 8.28 2.00 0.82 8.62 2.00 0.82 8.97 2.00 0.82 9.31 2.00 0.82 9.66 2.00 0.82 10.00 2.00 0.82 0.00 2.00 0.85 0.34 2.00 0.85 0.69 2.00 0.85 1.03 2.00 0.85 1.38 2.00 0.85 1.72 2.00 0.85 2.07 2.00 0.85 2.41 2.00 0.85 2.76 2.00 0.85 3.10 2.00 0.85 3.45 2.00 0.85 3.79 2.00 0.85 4.14 2.00 0.85 4.48 2.00 0.85 4.83 2.00 0.85 5.17 2.00 0.85 5.52 2.00 0.85 5.86 2.00 0.85 6.21 2.00 0.85 6.55 2.00 0.85 6.90 2.00 0.85 7.24 2.00 0.85 7.59 2.00 0.85 7.93 2.00 0.85 8.28 2.00 0.85 8.62 2.00 0.85 8.97 2.00 0.85 9.31 2.00 0.85 9.66 2.00 0.85 10.00 2.00 0.85 0.00 2.00 0.89 0.34 2.00 0.89 0.69 2.00 0.89 1.03 2.00 0.89 1.38 2.00 0.89 1.72 2.00 0.89 2.07 2.00 0.89 2.41 2.00 0.89 2.76 2.00 0.89 3.10 2.00 0.89 3.45 2.00 0.89 3.79 2.00 0.89 4.14 2.00 0.89 4.48 2.00 0.89 4.83 2.00 0.89 5.17 2.00 0.89 5.52 2.00 0.89 5.86 2.00 0.89 6.21 2.00 0.89 6.55 2.00 0.89 6.90 2.00 0.89 7.24 2.00 0.89 7.59 2.00 0.89 7.93 2.00 0.89 8.28 2.00 0.89 8.62 2.00 0.89 8.97 2.00 0.89 9.31 2.00 0.89 9.66 2.00 0.89 10.00 2.00 0.89 0.00 2.00 0.92 0.34 2.00 0.92 0.69 2.00 0.92 1.03 2.00 0.92 1.38 2.00 0.92 1.72 2.00 0.92 2.07 2.00 0.92 2.41 2.00 0.92 2.76 2.00 0.92 3.10 2.00 0.92 3.45 2.00 0.92 3.79 2.00 0.92 4.14 2.00 0.92 4.48 2.00 0.92 4.83 2.00 0.92 5.17 2.00 0.92 5.52 2.00 0.92 5.86 2.00 0.92 6.21 2.00 0.92 6.55 2.00 0.92 6.90 2.00 0.92 7.24 2.00 0.92 7.59 2.00 0.92 7.93 2.00 0.92 8.28 2.00 0.92 8.62 2.00 0.92 8.97 2.00 0.92 9.31 2.00 0.92 9.66 2.00 0.92 10.00 2.00 0.92 0.00 2.00 0.96 0.34 2.00 0.96 0.69 2.00 0.96 1.03 2.00 0.96 1.38 2.00 0.96 1.72 2.00 0.96 2.07 2.00 0.96 2.41 2.00 0.96 2.76 2.00 0.96 3.10 2.00 0.96 3.45 2.00 0.96 3.79 2.00 0.96 4.14 2.00 0.96 4.48 2.00 0.96 4.83 2.00 0.96 5.17 2.00 0.96 5.52 2.00 0.96 5.86 2.00 0.96 6.21 2.00 0.96 6.55 2.00 0.96 6.90 2.00 0.96 7.24 2.00 0.96 7.59 2.00 0.96 7.93 2.00 0.96 8.28 2.00 0.96 8.62 2.00 0.96 8.97 2.00 0.96 9.31 2.00 0.96 9.66 2.00 0.96 10.00 2.00 0.96 0.00 2.00 0.99 0.34 2.00 0.99 0.69 2.00 0.99 1.03 2.00 0.99 1.38 2.00 0.99 1.72 2.00 0.99 2.07 2.00 0.99 2.41 2.00 0.99 2.76 2.00 0.99 3.10 2.00 0.99 3.45 2.00 0.99 3.79 2.00 0.99 4.14 2.00 0.99 4.48 2.00 0.99 4.83 2.00 0.99 5.17 2.00 0.99 5.52 2.00 0.99 5.86 2.00 0.99 6.21 2.00 0.99 6.55 2.00 0.99 6.90 2.00 0.99 7.24 2.00 0.99 7.59 2.00 0.99 7.93 2.00 0.99 8.28 2.00 0.99 8.62 2.00 0.99 8.97 2.00 0.99 9.31 2.00 0.99 9.66 2.00 0.99 10.00 2.00 0.99
POINT_DATA 900
SCALARS type float
LOOKUP_TABLE default
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 1.57 1.57 1.57 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 1.57 1.57 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 1.57 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
\ No newline at end of file
Source diff could not be displayed: it is too large. Options to address this: view the blob.
This diff is collapsed.
# vtk DataFile Version 2.0
VTK from Matlab
ASCII
DATASET STRUCTURED_GRID
DIMENSIONS 1 30 30
POINTS 900 float
0.00 2.00 0.01 0.34 2.00 0.01 0.69 2.00 0.01 1.03 2.00 0.01 1.38 2.00 0.01 1.72 2.00 0.01 2.07 2.00 0.01 2.41 2.00 0.01 2.76 2.00 0.01 3.10 2.00 0.01 3.45 2.00 0.01 3.79 2.00 0.01 4.14 2.00 0.01 4.48 2.00 0.01 4.83 2.00 0.01 5.17 2.00 0.01 5.52 2.00 0.01 5.86 2.00 0.01 6.21 2.00 0.01 6.55 2.00 0.01 6.90 2.00 0.01 7.24 2.00 0.01 7.59 2.00 0.01 7.93 2.00 0.01 8.28 2.00 0.01 8.62 2.00 0.01 8.97 2.00 0.01 9.31 2.00 0.01 9.66 2.00 0.01 10.00 2.00 0.01 0.00 2.00 0.04 0.34 2.00 0.04 0.69 2.00 0.04 1.03 2.00 0.04 1.38 2.00 0.04 1.72 2.00 0.04 2.07 2.00 0.04 2.41 2.00 0.04 2.76 2.00 0.04 3.10 2.00 0.04 3.45 2.00 0.04 3.79 2.00 0.04 4.14 2.00 0.04 4.48 2.00 0.04 4.83 2.00 0.04 5.17 2.00 0.04 5.52 2.00 0.04 5.86 2.00 0.04 6.21 2.00 0.04 6.55 2.00 0.04 6.90 2.00 0.04 7.24 2.00 0.04 7.59 2.00 0.04 7.93 2.00 0.04 8.28 2.00 0.04 8.62 2.00 0.04 8.97 2.00 0.04 9.31 2.00 0.04 9.66 2.00 0.04 10.00 2.00 0.04 0.00 2.00 0.08 0.34 2.00 0.08 0.69 2.00 0.08 1.03 2.00 0.08 1.38 2.00 0.08 1.72 2.00 0.08 2.07 2.00 0.08 2.41 2.00 0.08 2.76 2.00 0.08 3.10 2.00 0.08 3.45 2.00 0.08 3.79 2.00 0.08 4.14 2.00 0.08 4.48 2.00 0.08 4.83 2.00 0.08 5.17 2.00 0.08 5.52 2.00 0.08 5.86 2.00 0.08 6.21 2.00 0.08 6.55 2.00 0.08 6.90 2.00 0.08 7.24 2.00 0.08 7.59 2.00 0.08 7.93 2.00 0.08 8.28 2.00 0.08 8.62 2.00 0.08 8.97 2.00 0.08 9.31 2.00 0.08 9.66 2.00 0.08 10.00 2.00 0.08 0.00 2.00 0.11 0.34 2.00 0.11 0.69 2.00 0.11 1.03 2.00 0.11 1.38 2.00 0.11 1.72 2.00 0.11 2.07 2.00 0.11 2.41 2.00 0.11 2.76 2.00 0.11 3.10 2.00 0.11 3.45 2.00 0.11 3.79 2.00 0.11 4.14 2.00 0.11 4.48 2.00 0.11 4.83 2.00 0.11 5.17 2.00 0.11 5.52 2.00 0.11 5.86 2.00 0.11 6.21 2.00 0.11 6.55 2.00 0.11 6.90 2.00 0.11 7.24 2.00 0.11 7.59 2.00 0.11 7.93 2.00 0.11 8.28 2.00 0.11 8.62 2.00 0.11 8.97 2.00 0.11 9.31 2.00 0.11 9.66 2.00 0.11 10.00 2.00 0.11 0.00 2.00 0.15 0.34 2.00 0.15 0.69 2.00 0.15 1.03 2.00 0.15 1.38 2.00 0.15 1.72 2.00 0.15 2.07 2.00 0.15 2.41 2.00 0.15 2.76 2.00 0.15 3.10 2.00 0.15 3.45 2.00 0.15 3.79 2.00 0.15 4.14 2.00 0.15 4.48 2.00 0.15 4.83 2.00 0.15 5.17 2.00 0.15 5.52 2.00 0.15 5.86 2.00 0.15 6.21 2.00 0.15 6.55 2.00 0.15 6.90 2.00 0.15 7.24 2.00 0.15 7.59 2.00 0.15 7.93 2.00 0.15 8.28 2.00 0.15 8.62 2.00 0.15 8.97 2.00 0.15 9.31 2.00 0.15 9.66 2.00 0.15 10.00 2.00 0.15 0.00 2.00 0.18 0.34 2.00 0.18 0.69 2.00 0.18 1.03 2.00 0.18 1.38 2.00 0.18 1.72 2.00 0.18 2.07 2.00 0.18 2.41 2.00 0.18 2.76 2.00 0.18 3.10 2.00 0.18 3.45 2.00 0.18 3.79 2.00 0.18 4.14 2.00 0.18 4.48 2.00 0.18 4.83 2.00 0.18 5.17 2.00 0.18 5.52 2.00 0.18 5.86 2.00 0.18 6.21 2.00 0.18 6.55 2.00 0.18 6.90 2.00 0.18 7.24 2.00 0.18 7.59 2.00 0.18 7.93 2.00 0.18 8.28 2.00 0.18 8.62 2.00 0.18 8.97 2.00 0.18 9.31 2.00 0.18 9.66 2.00 0.18 10.00 2.00 0.18 0.00 2.00 0.21 0.34 2.00 0.21 0.69 2.00 0.21 1.03 2.00 0.21 1.38 2.00 0.21 1.72 2.00 0.21 2.07 2.00 0.21 2.41 2.00 0.21 2.76 2.00 0.21 3.10 2.00 0.21 3.45 2.00 0.21 3.79 2.00 0.21 4.14 2.00 0.21 4.48 2.00 0.21 4.83 2.00 0.21 5.17 2.00 0.21 5.52 2.00 0.21 5.86 2.00 0.21 6.21 2.00 0.21 6.55 2.00 0.21 6.90 2.00 0.21 7.24 2.00 0.21 7.59 2.00 0.21 7.93 2.00 0.21 8.28 2.00 0.21 8.62 2.00 0.21 8.97 2.00 0.21 9.31 2.00 0.21 9.66 2.00 0.21 10.00 2.00 0.21 0.00 2.00 0.25 0.34 2.00 0.25 0.69 2.00 0.25 1.03 2.00 0.25 1.38 2.00 0.25 1.72 2.00 0.25 2.07 2.00 0.25 2.41 2.00 0.25 2.76 2.00 0.25 3.10 2.00 0.25 3.45 2.00 0.25 3.79 2.00 0.25 4.14 2.00 0.25 4.48 2.00 0.25 4.83 2.00 0.25 5.17 2.00 0.25 5.52 2.00 0.25 5.86 2.00 0.25 6.21 2.00 0.25 6.55 2.00 0.25 6.90 2.00 0.25 7.24 2.00 0.25 7.59 2.00 0.25 7.93 2.00 0.25 8.28 2.00 0.25 8.62 2.00 0.25 8.97 2.00 0.25 9.31 2.00 0.25 9.66 2.00 0.25 10.00 2.00 0.25 0.00 2.00 0.28 0.34 2.00 0.28 0.69 2.00 0.28 1.03 2.00 0.28 1.38 2.00 0.28 1.72 2.00 0.28 2.07 2.00 0.28 2.41 2.00 0.28 2.76 2.00 0.28 3.10 2.00 0.28 3.45 2.00 0.28 3.79 2.00 0.28 4.14 2.00 0.28 4.48 2.00 0.28 4.83 2.00 0.28 5.17 2.00 0.28 5.52 2.00 0.28 5.86 2.00 0.28 6.21 2.00 0.28 6.55 2.00 0.28 6.90 2.00 0.28 7.24 2.00 0.28 7.59 2.00 0.28 7.93 2.00 0.28 8.28 2.00 0.28 8.62 2.00 0.28 8.97 2.00 0.28 9.31 2.00 0.28 9.66 2.00 0.28 10.00 2.00 0.28 0.00 2.00 0.31 0.34 2.00 0.31 0.69 2.00 0.31 1.03 2.00 0.31 1.38 2.00 0.31 1.72 2.00 0.31 2.07 2.00 0.31 2.41 2.00 0.31 2.76 2.00 0.31 3.10 2.00 0.31 3.45 2.00 0.31 3.79 2.00 0.31 4.14 2.00 0.31 4.48 2.00 0.31 4.83 2.00 0.31 5.17 2.00 0.31 5.52 2.00 0.31 5.86 2.00 0.31 6.21 2.00 0.31 6.55 2.00 0.31 6.90 2.00 0.31 7.24 2.00 0.31 7.59 2.00 0.31 7.93 2.00 0.31 8.28 2.00 0.31 8.62 2.00 0.31 8.97 2.00 0.31 9.31 2.00 0.31 9.66 2.00 0.31 10.00 2.00 0.31 0.00 2.00 0.35 0.34 2.00 0.35 0.69 2.00 0.35 1.03 2.00 0.35 1.38 2.00 0.35 1.72 2.00 0.35 2.07 2.00 0.35 2.41 2.00 0.35 2.76 2.00 0.35 3.10 2.00 0.35 3.45 2.00 0.35 3.79 2.00 0.35 4.14 2.00 0.35 4.48 2.00 0.35 4.83 2.00 0.35 5.17 2.00 0.35 5.52 2.00 0.35 5.86 2.00 0.35 6.21 2.00 0.35 6.55 2.00 0.35 6.90 2.00 0.35 7.24 2.00 0.35 7.59 2.00 0.35 7.93 2.00 0.35 8.28 2.00 0.35 8.62 2.00 0.35 8.97 2.00 0.35 9.31 2.00 0.35 9.66 2.00 0.35 10.00 2.00 0.35 0.00 2.00 0.38 0.34 2.00 0.38 0.69 2.00 0.38 1.03 2.00 0.38 1.38 2.00 0.38 1.72 2.00 0.38 2.07 2.00 0.38 2.41 2.00 0.38 2.76 2.00 0.38 3.10 2.00 0.38 3.45 2.00 0.38 3.79 2.00 0.38 4.14 2.00 0.38 4.48 2.00 0.38 4.83 2.00 0.38 5.17 2.00 0.38 5.52 2.00 0.38 5.86 2.00 0.38 6.21 2.00 0.38 6.55 2.00 0.38 6.90 2.00 0.38 7.24 2.00 0.38 7.59 2.00 0.38 7.93 2.00 0.38 8.28 2.00 0.38 8.62 2.00 0.38 8.97 2.00 0.38 9.31 2.00 0.38 9.66 2.00 0.38 10.00 2.00 0.38 0.00 2.00 0.42 0.34 2.00 0.42 0.69 2.00 0.42 1.03 2.00 0.42 1.38 2.00 0.42 1.72 2.00 0.42 2.07 2.00 0.42 2.41 2.00 0.42 2.76 2.00 0.42 3.10 2.00 0.42 3.45 2.00 0.42 3.79 2.00 0.42 4.14 2.00 0.42 4.48 2.00 0.42 4.83 2.00 0.42 5.17 2.00 0.42 5.52 2.00 0.42 5.86 2.00 0.42 6.21 2.00 0.42 6.55 2.00 0.42 6.90 2.00 0.42 7.24 2.00 0.42 7.59 2.00 0.42 7.93 2.00 0.42 8.28 2.00 0.42 8.62 2.00 0.42 8.97 2.00 0.42 9.31 2.00 0.42 9.66 2.00 0.42 10.00 2.00 0.42 0.00 2.00 0.45 0.34 2.00 0.45 0.69 2.00 0.45 1.03 2.00 0.45 1.38 2.00 0.45 1.72 2.00 0.45 2.07 2.00 0.45 2.41 2.00 0.45 2.76 2.00 0.45 3.10 2.00 0.45 3.45 2.00 0.45 3.79 2.00 0.45 4.14 2.00 0.45 4.48 2.00 0.45 4.83 2.00 0.45 5.17 2.00 0.45 5.52 2.00 0.45 5.86 2.00 0.45 6.21 2.00 0.45 6.55 2.00 0.45 6.90 2.00 0.45 7.24 2.00 0.45 7.59 2.00 0.45 7.93 2.00 0.45 8.28 2.00 0.45 8.62 2.00 0.45 8.97 2.00 0.45 9.31 2.00 0.45 9.66 2.00 0.45 10.00 2.00 0.45 0.00 2.00 0.48 0.34 2.00 0.48 0.69 2.00 0.48 1.03 2.00 0.48 1.38 2.00 0.48 1.72 2.00 0.48 2.07 2.00 0.48 2.41 2.00 0.48 2.76 2.00 0.48 3.10 2.00 0.48 3.45 2.00 0.48 3.79 2.00 0.48 4.14 2.00 0.48 4.48 2.00 0.48 4.83 2.00 0.48 5.17 2.00 0.48 5.52 2.00 0.48 5.86 2.00 0.48 6.21 2.00 0.48 6.55 2.00 0.48 6.90 2.00 0.48 7.24 2.00 0.48 7.59 2.00 0.48 7.93 2.00 0.48 8.28 2.00 0.48 8.62 2.00 0.48 8.97 2.00 0.48 9.31 2.00 0.48 9.66 2.00 0.48 10.00 2.00 0.48 0.00 2.00 0.52 0.34 2.00 0.52 0.69 2.00 0.52 1.03 2.00 0.52 1.38 2.00 0.52 1.72 2.00 0.52 2.07 2.00 0.52 2.41 2.00 0.52 2.76 2.00 0.52 3.10 2.00 0.52 3.45 2.00 0.52 3.79 2.00 0.52 4.14 2.00 0.52 4.48 2.00 0.52 4.83 2.00 0.52 5.17 2.00 0.52 5.52 2.00 0.52 5.86 2.00 0.52 6.21 2.00 0.52 6.55 2.00 0.52 6.90 2.00 0.52 7.24 2.00 0.52 7.59 2.00 0.52 7.93 2.00 0.52 8.28 2.00 0.52 8.62 2.00 0.52 8.97 2.00 0.52 9.31 2.00 0.52 9.66 2.00 0.52 10.00 2.00 0.52 0.00 2.00 0.55 0.34 2.00 0.55 0.69 2.00 0.55 1.03 2.00 0.55 1.38 2.00 0.55 1.72 2.00 0.55 2.07 2.00 0.55 2.41 2.00 0.55 2.76 2.00 0.55 3.10 2.00 0.55 3.45 2.00 0.55 3.79 2.00 0.55 4.14 2.00 0.55 4.48 2.00 0.55 4.83 2.00 0.55 5.17 2.00 0.55 5.52 2.00 0.55 5.86 2.00 0.55 6.21 2.00 0.55 6.55 2.00 0.55 6.90 2.00 0.55 7.24 2.00 0.55 7.59 2.00 0.55 7.93 2.00 0.55 8.28 2.00 0.55 8.62 2.00 0.55 8.97 2.00 0.55 9.31 2.00 0.55 9.66 2.00 0.55 10.00 2.00 0.55 0.00 2.00 0.58 0.34 2.00 0.58 0.69 2.00 0.58 1.03 2.00 0.58 1.38 2.00 0.58 1.72 2.00 0.58 2.07 2.00 0.58 2.41 2.00 0.58 2.76 2.00 0.58 3.10 2.00 0.58 3.45 2.00 0.58 3.79 2.00 0.58 4.14 2.00 0.58 4.48 2.00 0.58 4.83 2.00 0.58 5.17 2.00 0.58 5.52 2.00 0.58 5.86 2.00 0.58 6.21 2.00 0.58 6.55 2.00 0.58 6.90 2.00 0.58 7.24 2.00 0.58 7.59 2.00 0.58 7.93 2.00 0.58 8.28 2.00 0.58 8.62 2.00 0.58 8.97 2.00 0.58 9.31 2.00 0.58 9.66 2.00 0.58 10.00 2.00 0.58 0.00 2.00 0.62 0.34 2.00 0.62 0.69 2.00 0.62 1.03 2.00 0.62 1.38 2.00 0.62 1.72 2.00 0.62 2.07 2.00 0.62 2.41 2.00 0.62 2.76 2.00 0.62 3.10 2.00 0.62 3.45 2.00 0.62 3.79 2.00 0.62 4.14 2.00 0.62 4.48 2.00 0.62 4.83 2.00 0.62 5.17 2.00 0.62 5.52 2.00 0.62 5.86 2.00 0.62 6.21 2.00 0.62 6.55 2.00 0.62 6.90 2.00 0.62 7.24 2.00 0.62 7.59 2.00 0.62 7.93 2.00 0.62 8.28 2.00 0.62 8.62 2.00 0.62 8.97 2.00 0.62 9.31 2.00 0.62 9.66 2.00 0.62 10.00 2.00 0.62 0.00 2.00 0.65 0.34 2.00 0.65 0.69 2.00 0.65 1.03 2.00 0.65 1.38 2.00 0.65 1.72 2.00 0.65 2.07 2.00 0.65 2.41 2.00 0.65 2.76 2.00 0.65 3.10 2.00 0.65 3.45 2.00 0.65 3.79 2.00 0.65 4.14 2.00 0.65 4.48 2.00 0.65 4.83 2.00 0.65 5.17 2.00 0.65 5.52 2.00 0.65 5.86 2.00 0.65 6.21 2.00 0.65 6.55 2.00 0.65 6.90 2.00 0.65 7.24 2.00 0.65 7.59 2.00 0.65 7.93 2.00 0.65 8.28 2.00 0.65 8.62 2.00 0.65 8.97 2.00 0.65 9.31 2.00 0.65 9.66 2.00 0.65 10.00 2.00 0.65 0.00 2.00 0.69 0.34 2.00 0.69 0.69 2.00 0.69 1.03 2.00 0.69 1.38 2.00 0.69 1.72 2.00 0.69 2.07 2.00 0.69 2.41 2.00 0.69 2.76 2.00 0.69 3.10 2.00 0.69 3.45 2.00 0.69 3.79 2.00 0.69 4.14 2.00 0.69 4.48 2.00 0.69 4.83 2.00 0.69 5.17 2.00 0.69 5.52 2.00 0.69 5.86 2.00 0.69 6.21 2.00 0.69 6.55 2.00 0.69 6.90 2.00 0.69 7.24 2.00 0.69 7.59 2.00 0.69 7.93 2.00 0.69 8.28 2.00 0.69 8.62 2.00 0.69 8.97 2.00 0.69 9.31 2.00 0.69 9.66 2.00 0.69 10.00 2.00 0.69 0.00 2.00 0.72 0.34 2.00 0.72 0.69 2.00 0.72 1.03 2.00 0.72 1.38 2.00 0.72 1.72 2.00 0.72 2.07 2.00 0.72 2.41 2.00 0.72 2.76 2.00 0.72 3.10 2.00 0.72 3.45 2.00 0.72 3.79 2.00 0.72 4.14 2.00 0.72 4.48 2.00 0.72 4.83 2.00 0.72 5.17 2.00 0.72 5.52 2.00 0.72 5.86 2.00 0.72 6.21 2.00 0.72 6.55 2.00 0.72 6.90 2.00 0.72 7.24 2.00 0.72 7.59 2.00 0.72 7.93 2.00 0.72 8.28 2.00 0.72 8.62 2.00 0.72 8.97 2.00 0.72 9.31 2.00 0.72 9.66 2.00 0.72 10.00 2.00 0.72 0.00 2.00 0.75 0.34 2.00 0.75 0.69 2.00 0.75 1.03 2.00 0.75 1.38 2.00 0.75 1.72 2.00 0.75 2.07 2.00 0.75 2.41 2.00 0.75 2.76 2.00 0.75 3.10 2.00 0.75 3.45 2.00 0.75 3.79 2.00 0.75 4.14 2.00 0.75 4.48 2.00 0.75 4.83 2.00 0.75 5.17 2.00 0.75 5.52 2.00 0.75 5.86 2.00 0.75 6.21 2.00 0.75 6.55 2.00 0.75 6.90 2.00 0.75 7.24 2.00 0.75 7.59 2.00 0.75 7.93 2.00 0.75 8.28 2.00 0.75 8.62 2.00 0.75 8.97 2.00 0.75 9.31 2.00 0.75 9.66 2.00 0.75 10.00 2.00 0.75 0.00 2.00 0.79 0.34 2.00 0.79 0.69 2.00 0.79 1.03 2.00 0.79 1.38 2.00 0.79 1.72 2.00 0.79 2.07 2.00 0.79 2.41 2.00 0.79 2.76 2.00 0.79 3.10 2.00 0.79 3.45 2.00 0.79 3.79 2.00 0.79 4.14 2.00 0.79 4.48 2.00 0.79 4.83 2.00 0.79 5.17 2.00 0.79 5.52 2.00 0.79 5.86 2.00 0.79 6.21 2.00 0.79 6.55 2.00 0.79 6.90 2.00 0.79 7.24 2.00 0.79 7.59 2.00 0.79 7.93 2.00 0.79 8.28 2.00 0.79 8.62 2.00 0.79 8.97 2.00 0.79 9.31 2.00 0.79 9.66 2.00 0.79 10.00 2.00 0.79 0.00 2.00 0.82 0.34 2.00 0.82 0.69 2.00 0.82 1.03 2.00 0.82 1.38 2.00 0.82 1.72 2.00 0.82 2.07 2.00 0.82 2.41 2.00 0.82 2.76 2.00 0.82 3.10 2.00 0.82 3.45 2.00 0.82 3.79 2.00 0.82 4.14 2.00 0.82 4.48 2.00 0.82 4.83 2.00 0.82 5.17 2.00 0.82 5.52 2.00 0.82 5.86 2.00 0.82 6.21 2.00 0.82 6.55 2.00 0.82 6.90 2.00 0.82 7.24 2.00 0.82 7.59 2.00 0.82 7.93 2.00 0.82 8.28 2.00 0.82 8.62 2.00 0.82 8.97 2.00 0.82 9.31 2.00 0.82 9.66 2.00 0.82 10.00 2.00 0.82 0.00 2.00 0.85 0.34 2.00 0.85 0.69 2.00 0.85 1.03 2.00 0.85 1.38 2.00 0.85 1.72 2.00 0.85 2.07 2.00 0.85 2.41 2.00 0.85 2.76 2.00 0.85 3.10 2.00 0.85 3.45 2.00 0.85 3.79 2.00 0.85 4.14 2.00 0.85 4.48 2.00 0.85 4.83 2.00 0.85 5.17 2.00 0.85 5.52 2.00 0.85 5.86 2.00 0.85 6.21 2.00 0.85 6.55 2.00 0.85 6.90 2.00 0.85 7.24 2.00 0.85 7.59 2.00 0.85 7.93 2.00 0.85 8.28 2.00 0.85 8.62 2.00 0.85 8.97 2.00 0.85 9.31 2.00 0.85 9.66 2.00 0.85 10.00 2.00 0.85 0.00 2.00 0.89 0.34 2.00 0.89 0.69 2.00 0.89 1.03 2.00 0.89 1.38 2.00 0.89 1.72 2.00 0.89 2.07 2.00 0.89 2.41 2.00 0.89 2.76 2.00 0.89 3.10 2.00 0.89 3.45 2.00 0.89 3.79 2.00 0.89 4.14 2.00 0.89 4.48 2.00 0.89 4.83 2.00 0.89 5.17 2.00 0.89 5.52 2.00 0.89 5.86 2.00 0.89 6.21 2.00 0.89 6.55 2.00 0.89 6.90 2.00 0.89 7.24 2.00 0.89 7.59 2.00 0.89 7.93 2.00 0.89 8.28 2.00 0.89 8.62 2.00 0.89 8.97 2.00 0.89 9.31 2.00 0.89 9.66 2.00 0.89 10.00 2.00 0.89 0.00 2.00 0.92 0.34 2.00 0.92 0.69 2.00 0.92 1.03 2.00 0.92 1.38 2.00 0.92 1.72 2.00 0.92 2.07 2.00 0.92 2.41 2.00 0.92 2.76 2.00 0.92 3.10 2.00 0.92 3.45 2.00 0.92 3.79 2.00 0.92 4.14 2.00 0.92 4.48 2.00 0.92 4.83 2.00 0.92 5.17 2.00 0.92 5.52 2.00 0.92 5.86 2.00 0.92 6.21 2.00 0.92 6.55 2.00 0.92 6.90 2.00 0.92 7.24 2.00 0.92 7.59 2.00 0.92 7.93 2.00 0.92 8.28 2.00 0.92 8.62 2.00 0.92 8.97 2.00 0.92 9.31 2.00 0.92 9.66 2.00 0.92 10.00 2.00 0.92 0.00 2.00 0.96 0.34 2.00 0.96 0.69 2.00 0.96 1.03 2.00 0.96 1.38 2.00 0.96 1.72 2.00 0.96 2.07 2.00 0.96 2.41 2.00 0.96 2.76 2.00 0.96 3.10 2.00 0.96 3.45 2.00 0.96 3.79 2.00 0.96 4.14 2.00 0.96 4.48 2.00 0.96 4.83 2.00 0.96 5.17 2.00 0.96 5.52 2.00 0.96 5.86 2.00 0.96 6.21 2.00 0.96 6.55 2.00 0.96 6.90 2.00 0.96 7.24 2.00 0.96 7.59 2.00 0.96 7.93 2.00 0.96 8.28 2.00 0.96 8.62 2.00 0.96 8.97 2.00 0.96 9.31 2.00 0.96 9.66 2.00 0.96 10.00 2.00 0.96 0.00 2.00 0.99 0.34 2.00 0.99 0.69 2.00 0.99 1.03 2.00 0.99 1.38 2.00 0.99 1.72 2.00 0.99 2.07 2.00 0.99 2.41 2.00 0.99 2.76 2.00 0.99 3.10 2.00 0.99 3.45 2.00 0.99 3.79 2.00 0.99 4.14 2.00 0.99 4.48 2.00 0.99 4.83 2.00 0.99 5.17 2.00 0.99 5.52 2.00 0.99 5.86 2.00 0.99 6.21 2.00 0.99 6.55 2.00 0.99 6.90 2.00 0.99 7.24 2.00 0.99 7.59 2.00 0.99 7.93 2.00 0.99 8.28 2.00 0.99 8.62 2.00 0.99 8.97 2.00 0.99 9.31 2.00 0.99 9.66 2.00 0.99 10.00 2.00 0.99
POINT_DATA 900
SCALARS type float
LOOKUP_TABLE default
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 2.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
\ No newline at end of file
Source diff could not be displayed: it is too large. Options to address this: view the blob.
File added
clear all
clc
% INPUT Parameters
mu_1 = 1;
rho_1 = 1;
theta= 0.3;
alpha = 2;
beta= 2;
fprintf('===========================================================================================================================');
fprintf(' Possible cases for global minimizers: (I) , (II) , (III) , (IV) ')
fprintf('============================================== INPUT PARAMETERS ===========================================================');
fprintf('mu_1: %d rho:1: %d theta: %d', mu_1,rho_1,theta );
fprintf('===========================================================================================================================');
% choose u_gamma = q3 to be either q1, q2 or something in between
% set_mu_gamma = 'q1';
set_mu_gamma = 'q2'; %(hyperbolic-case)
% set_mu_gamma = 'm'; % mean of q1,q2
% print_output = true;
print_output = false;
% Test for fixed value
% [A,angle,type] = classifyMIN(mu_1,rho_1,alpha,beta,theta,set_mu_gamma,print_output);
% PLOT
x = linspace(-20,20,45); %~alpha
y = linspace(1.5,40,45); %~beta
z = linspace(0.05,0.95,45); %~theta
[X1,Y1] = meshgrid(x,y);
[A_2D,angle_2D,V_2D] = arrayfun(@(a,b)classifyMIN(mu_1,rho_1,a,b,theta,set_mu_gamma,print_output),X1,Y1,'UniformOutput', false);
[X,Y,Z] = meshgrid(x,y,z);
[A,angle_3D,V_3D] = arrayfun(@(a,b,theta)classifyMIN(mu_1,rho_1,a,b,theta,set_mu_gamma,print_output),X,Y,Z,'UniformOutput', false);
color_3D = cell2mat(V_3D);
color_2D = cell2mat(V_2D);
angle_2D = cell2mat(angle_2D);
angle_3D = cell2mat(angle_3D);
A = cell2mat(A);
A_2D = cell2mat(A_2D);
X1 = reshape(X1,[],1);
Y1 = reshape(Y1,[],1);
X = reshape(X,[],1);
Y = reshape(Y,[],1);
Z = reshape(Z,[],1);
color_2D = reshape(color_2D,[],1);
color_3D = reshape(color_3D,[],1);
angle_2D = reshape(angle_2D,[],1);
angle_3D = reshape(angle_3D,[],1);
% Structure result depending on Type/Color
% V_2D = reshape(V_2D,[],1);
V_2DT1 = (color_2D == 1);
V_2DT2 = (color_2D == 2);
V_2DT3 = (color_2D == 3);
V_2DT1 = reshape(V_2DT1,[],1);
V_2DT2 = reshape(V_2DT2,[],1);
V_2DT3 = reshape(V_2DT3,[],1);
X1T1 = V_2DT1.*X1;
Y1T1 = V_2DT1.*Y1;
X1T2 = V_2DT2.*X1;
Y1T2 = V_2DT2.*Y1;
X1T3 = V_2DT3.*X1;
Y1T3 = V_2DT3.*Y1;
%%% 2D - Plot (fixed Theta)
cm_2D = redblue(3);
scatter(X1T1,Y1T1,[], 'MarkerFaceColor',[0 0 1 ], 'MarkerEdgeColor','black');
colormap(cm_2D)
hold on
scatter(X1T2,Y1T2,[], 'MarkerFaceColor',[1 0 0], 'MarkerEdgeColor','black');
hold on
% scatter(X1T3,Y1T3,[],'MarkerFaceColor',[0 0 1 ], 'MarkerEdgeColor','black');
scatter(X1T3,Y1T3,[], angle_2D, 'filled','MarkerEdgeColor','black');
colormap(cm_2D)
legend('Type 1', 'Type 2', 'Type 3')
title('Fixed Theta Plot')
xlabel('alpha')
ylabel('beta')
hold off
%%% 3D - Plot
V_3DT1 = (color_3D == 1);
V_3DT2 = (color_3D == 2);
V_3DT3 = (color_3D == 3);
V_3DT1 = reshape(V_3DT1,[],1);
V_3DT2 = reshape(V_3DT2,[],1);
V_3DT3 = reshape(V_3DT3,[],1);
XT1 = V_3DT1.*X;
YT1 = V_3DT1.*Y;
ZT1 = V_3DT1.*Z;
XT2 = V_3DT2.*X;
YT2 = V_3DT2.*Y;
ZT2 = V_3DT2.*Z;
XT3 = V_3DT3.*X;
YT3 = V_3DT3.*Y;
ZT3 = V_3DT3.*Z;
cm = redblue(90);
figure
%fixed Color
% scatter3(XT1,YT1,ZT1, [], 'MarkerFaceColor',[0.75 0 0],'MarkerEdgeColor', 'none');
%variing Color
scatter3(YT1,ZT1,XT1, [], 'MarkerFaceColor',[0 0 1 ], 'MarkerEdgeColor','black');
colormap(cm);
hold on
scatter3(YT2,ZT2,XT2, [], 'MarkerFaceColor',[1 0 0],'MarkerEdgeColor', 'none');
hold on
% scatter3(XT3,YT3,ZT3, [],'MarkerFaceColor',[0 0 1 ],'MarkerEdgeColor', 'none');
scatter3(YT3,ZT3,XT3, [], angle_3D, 'filled');
legend('Type 1', 'Type 2', 'Type 3')
title('Classification of Minimizers, theta:')
% xlabel('alpha')
% ylabel('beta')
% zlabel('theta')
xlabel('beta')
ylabel('theta')
zlabel('alpha')
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
import math
import os
import subprocess
import fileinput
import re
#import sys
import matlab.engine
eng = matlab.engine.start_matlab()
# tf = eng.findParabolic
# print(tf)
# eng.findParabolic(nargout=0)
eng.Minimization_Script(nargout=0)
print('Running Python Code')
1 1 2.07819448498850168
1 2 -9.59442219281886493e-22
1 3 9.20995372360501347e-07
2 1 -9.87702818837798838e-20
2 2 2.08333333333341164
2 3 -9.79796825055082683e-21
3 1 6.10325081515254299e-05
3 2 -1.77052129286940134e-20
3 3 2.08273199371863926