Skip to content
Snippets Groups Projects
rotation.hh 30.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef ROTATION_HH
    #define ROTATION_HH
    
    /** \file
        \brief Define rotations in Euclidean spaces
    */
    
    #include <dune/common/fvector.hh>
    
    #include <dune/common/array.hh>
    
    #include <dune/common/fmatrix.hh>
    #include <dune/common/exceptions.hh>
    
    #include "quaternion.hh"
    
    #include <dune/gfe/tensor3.hh>
    #include <dune/gfe/unitvector.hh>
    
    #include <dune/gfe/skewmatrix.hh>
    
    template <class T, int dim>
    
    /** \brief Specialization for dim==2
    
        \tparam T The type used for coordinates
    
    */
    template <class T>
    
        /** \brief The type used for coordinates */
        typedef T ctype;
    
    
        /** \brief Dimension of the manifold formed by the 2d rotations */
        static const int dim = 1;
    
        /** \brief Coordinates are embedded in the euclidean space */
        static const int embeddedDim = 1;
    
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix */
        typedef Dune::FieldVector<T,1> TangentVector;
    
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix
    
        This vector is not really embedded in anything.  I have to make my notation more consistent! */
        typedef Dune::FieldVector<T,1> EmbeddedTangentVector;
    
    
        /** \brief Default constructor, create the identity rotation */
        Rotation() 
            : angle_(0)
        {}
    
    
        Rotation(const T& angle)
            : angle_(angle)
        {}
    
    
        /** \brief Return the identity element */
    
        static Rotation<T,2> identity() {
    
            // Default constructor creates an identity
    
        static T distance(const Rotation<T,2>& a, const Rotation<T,2>& b) {
    
            T dist = a.angle_ - b.angle_;
            while (dist < 0)
                dist += 2*M_PI;
            while (dist > 2*M_PI)
                dist -= 2*M_PI;
    
            return (dist <= M_PI) ? dist : 2*M_PI - dist;
        }
    
    
        /** \brief The exponential map from a given point $p \in SO(3)$. */
    
        static Rotation<T,2> exp(const Rotation<T,2>& p, const TangentVector& v) {
            Rotation<T,2> result = p;
    
            result.angle_ += v;
            return result;
        }
    
    
        /** \brief The exponential map from \f$ \mathfrak{so}(2) \f$ to \f$ SO(2) \f$
         */
    
        static Rotation<T,2> exp(const Dune::FieldVector<T,1>& v) {
            Rotation<T,2> result;
    
            result.angle_ = v[0];
            return result;
        }
    
    
        static TangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,2>& a, 
                                                                          const Rotation<T,2>& b) {
    
            // This assertion is here to remind me of the following laziness:
            // The difference has to be computed modulo 2\pi
            assert( std::fabs(a.angle_ - b.angle_) <= M_PI );
            return -2 * (a.angle_ - b.angle_);
    
        static Dune::FieldMatrix<T,1,1> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,2>& a, 
                                                                                                const Rotation<T,2>& b) {
    
        /** \brief Right multiplication */
    
        Rotation<T,2> mult(const Rotation<T,2>& other) const {
            Rotation<T,2> q = *this;
    
            q.angle_ += other.angle_;
            return q;
        }
    
        /** \brief Compute an orthonormal basis of the tangent space of SO(3).
    
        This basis is of course not globally continuous.
        */
        Dune::FieldMatrix<T,1,1> orthonormalFrame() const {
            return Dune::FieldMatrix<T,1,1>(1);
        }
        
    
        //private:
    
        // We store the rotation as an angle
    
    Oliver Sander's avatar
    Oliver Sander committed
    //! Send configuration to output stream
    template <class T>
    
    std::ostream& operator<< (std::ostream& s, const Rotation<T,2>& c)
    
    Oliver Sander's avatar
    Oliver Sander committed
      {
          return s << "[" << c.angle_ << "  (" << std::sin(c.angle_) << " " << std::cos(c.angle_) << ") ]";
      }
    
    
    /** \brief Specialization for dim==3 
    
    Uses unit quaternion coordinates.
    */
    template <class T>
    
    class Rotation<T,3> : public Quaternion<T>
    
    {
    
        /** \brief Computes sin(x/2) / x without getting unstable for small x */
        static T sincHalf(const T& x) {
    
            return (x < 1e-4) ? 0.5 - (x*x/48) : std::sin(x/2)/x;
    
        /** \brief Compute the derivative of arccos^2 without getting unstable for x close to 1 */
    
        static T derivativeOfArcCosSquared(const T& x) {
            const T eps = 1e-12;
    
            if (x > 1-eps) {  // regular expression is unstable, use the series expansion instead
                return -2 + 2*(x-1)/3 - 4/15*(x-1)*(x-1) + 4/35*(x-1)*(x-1)*(x-1);
            } else if (x < -1+eps) {  // The function is not differentiable
                DUNE_THROW(Dune::Exception, "arccos^2 is not differentiable at x==-1!");
            } else
                return -2*std::acos(x) / std::sqrt(1-x*x);
    
        /** \brief The type used for coordinates */
        typedef T ctype;
    
    
        /** \brief The type used for global coordinates */
    
        typedef Dune::FieldVector<T,4> CoordinateType;
    
        
        /** \brief Dimension of the manifold formed by the 3d rotations */
        static const int dim = 3;
        
    
        /** \brief Coordinates are embedded into a four-dimension Euclidean space */
        static const int embeddedDim = 4;
        
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix */
        typedef Dune::FieldVector<T,3> TangentVector;
    
    
        /** \brief A tangent vector as a vector in the surrounding coordinate space */
        typedef Quaternion<T> EmbeddedTangentVector;
    
    
        /** \brief Default constructor creates the identity element */
        Rotation()
            : Quaternion<T>(0,0,0,1)
        {}
    
        explicit Rotation<T,3>(const Dune::array<T,4>& c)
    
        explicit Rotation<T,3>(const Dune::FieldVector<T,4>& c)
    
        Rotation<T,3>(Dune::FieldVector<T,3> axis, T angle) 
    
        {
            axis /= axis.two_norm();
            axis *= std::sin(angle/2);
            (*this)[0] = axis[0];
            (*this)[1] = axis[1];
            (*this)[2] = axis[2];
            (*this)[3] = std::cos(angle/2);
        }
    
    
        /** \brief Return the identity element */
    
        static Rotation<T,3> identity() {
    
            // Default constructor creates an identity
    
        /** \brief Right multiplication */
        Rotation<T,3> mult(const Rotation<T,3>& other) const {
            Rotation<T,3> q;
            q[0] =   (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
            q[1] =   (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
            q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
            q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
    
            return q;
        }
    
    
        /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
         */
    
        static Rotation<T,3> exp(const SkewMatrix<T,3>& v) {
            Rotation<T,3> q;
    
            Dune::FieldVector<T,3> vAxial = v.axial();
            T normV = vAxial.two_norm();
    
    
            // Stabilization for small |v| due to Grassia
            T sin = sincHalf(normV);
    
            // if normV == 0 then q = (0,0,0,1)
            assert(!isnan(sin));
                
    
            q[0] = sin * vAxial[0];
            q[1] = sin * vAxial[1];
            q[2] = sin * vAxial[2];
    
            q[3] = std::cos(normV/2);
    
            return q;
        }
    
        /** \brief The exponential map from a given point $p \in SO(3)$. */
    
        static Rotation<T,3> exp(const Rotation<T,3>& p, const SkewMatrix<T,3>& v) {
            Rotation<T,3> corr = exp(v);
    
        /** \brief The exponential map from a given point $p \in SO(3)$.
         
            There may be a more direct way to implement this
            
            \param v A tangent vector in quaternion coordinates
         */
    
        static Rotation<T,3> exp(const Rotation<T,3>& p, const EmbeddedTangentVector& v) {
    
            // The vector v as a quaternion
            Quaternion<T> vQuat(v);
            
            // left multiplication by the inverse base point yields a tangent vector at the identity
            Quaternion<T> vAtIdentity = p.inverse().mult(vQuat);
    
            assert( std::fabs(vAtIdentity[3]) < 1e-8 );
    
    
            // vAtIdentity as a skew matrix
    
            SkewMatrix<T,3> vMatrix;
            vMatrix.axial()[0] = 2*vAtIdentity[0];
            vMatrix.axial()[1] = 2*vAtIdentity[1];
            vMatrix.axial()[2] = 2*vAtIdentity[2];
    
            
            // The actual exponential map
            return exp(p, vMatrix);
    
        }
         /** \brief The exponential map from a given point $p \in SO(3)$.
         
            \param v A tangent vector.
         */
    
        static Rotation<T,3> exp(const Rotation<T,3>& p, const TangentVector& v) {
    
            
            // embedded tangent vector
            Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame();
            Quaternion<T> embeddedTangent;
            basis.mtv(v, embeddedTangent);
            
            return exp(p,embeddedTangent);
    
    
        /** \brief Compute tangent vector from given basepoint and skew symmetric matrix. */ 
    
        static TangentVector skewToTangentVector(const Rotation<T,3>& p, const SkewMatrix<T,3>& v ) {
    
    
            // embedded tangent vector at identity
            Quaternion<T> vAtIdentity(0);
    
            vAtIdentity[0] = 0.5*v.axial()[0];
            vAtIdentity[1] = 0.5*v.axial()[1];
            vAtIdentity[2] = 0.5*v.axial()[2];
    
    
            // multiply with base point to get real embedded tangent vector
    
            Quaternion<T> vQuat = ((Quaternion<T>) p).mult(vAtIdentity);
    
    
            //get basis of the tangent space
            Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame();
    
            // transform coordinates
            TangentVector tang;
            basis.mv(vQuat,tang);
    
            return tang;
        }
    
    
        /** \brief Compute skew matrix from given basepoint and tangent vector. */ 
    
        static SkewMatrix<T,3> tangentToSkew(const Rotation<T,3>& p, const TangentVector& tangent) {
    
            
            // embedded tangent vector
            Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame();
            Quaternion<T> embeddedTangent;
            basis.mtv(tangent, embeddedTangent);
    
            return tangentToSkew(p,embeddedTangent);
    
        /** \brief Compute skew matrix from given basepoint and an embedded tangent vector. */ 
    
        static SkewMatrix<T,3> tangentToSkew(const Rotation<T,3>& p, const EmbeddedTangentVector& q) {
    
            // left multiplication by the inverse base point yields a tangent vector at the identity
    
            Quaternion<T> vAtIdentity = p.inverse().mult(q);
    
            assert( std::fabs(vAtIdentity[3]) < 1e-8 );
    
    
            SkewMatrix<T,3> skew;
            skew.axial()[0] = 2*vAtIdentity[0];
            skew.axial()[1] = 2*vAtIdentity[1];
            skew.axial()[2] = 2*vAtIdentity[2];
    
        static Rotation<T,3> exp(const Rotation<T,3>& p, const Dune::FieldVector<T,4>& v) {
    
            
            assert( std::fabs(p*v) < 1e-8 );
            
            // The vector v as a quaternion
            Quaternion<T> vQuat(v);
            
            // left multiplication by the inverse base point yields a tangent vector at the identity
            Quaternion<T> vAtIdentity = p.inverse().mult(vQuat);
            assert( std::fabs(vAtIdentity[3]) < 1e-8 );
    
            // vAtIdentity as a skew matrix
    
            SkewMatrix<T,3> vMatrix;
            vMatrix.axial()[0] = 2*vAtIdentity[0];
            vMatrix.axial()[1] = 2*vAtIdentity[1];
            vMatrix.axial()[2] = 2*vAtIdentity[2];
    
        static Dune::FieldMatrix<T,4,3> Dexp(const SkewMatrix<T,3>& v) {
    
            Dune::FieldVector<T,3> vAxial = v.axial();
            T norm = vAxial.two_norm();
    
                    result[m][i] = (norm<1e-10) 
    
                        /** \todo Isn't there a better way to implement this stably? */
                        ? 0.5 * (i==m) 
    
                        : 0.5 * std::cos(norm/2) * vAxial[i] * vAxial[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - vAxial[i]*vAxial[m]/(norm*norm));
    
                result[3][i] = - 0.5 * sincHalf(norm) * vAxial[i];
    
    
            }
            return result;
        }
    
        static void DDexp(const Dune::FieldVector<T,3>& v,
                          Dune::array<Dune::FieldMatrix<T,3,3>, 4>& result) {
    
            T norm = v.two_norm();
    
    
                for (int m=0; m<4; m++)
                    result[m] = 0;
    
                for (int i=0; i<3; i++)
                    result[3][i][i] = -0.25;
    
    
            } else {
    
                for (int i=0; i<3; i++) {
                    
                    for (int j=0; j<3; j++) {
                        
                        for (int m=0; m<3; m++) {
                            
                            result[m][i][j] = -0.25*std::sin(norm/2)*v[i]*v[j]*v[m]/(norm*norm*norm)
                                + ((i==j)*v[m] + (j==m)*v[i] + (i==m)*v[j] - 3*v[i]*v[j]*v[m]/(norm*norm))
                                * (0.5*std::cos(norm/2) - sincHalf(norm)) / (norm*norm);
                            
    
                        }
    
                        result[3][i][j] = -0.5/(norm*norm)
                            * ( 0.5*std::cos(norm/2)*v[i]*v[j] + std::sin(norm/2) * ((i==j)*norm - v[i]*v[j]/norm));
    
                    }
    
                }
    
            }
    
        }
    
        /** \brief The inverse of the exponential map */
    
        static Dune::FieldVector<T,3> expInv(const Rotation<T,3>& q) {
    
            // Compute v = exp^{-1} q
            // Due to numerical dirt, q[3] may be larger than 1. 
            // In that case, use 1 instead of q[3].
            Dune::FieldVector<T,3> v;
            if (q[3] > 1.0) {
    
                v = 0;
    
            } else {
                
                T invSinc = 1/sincHalf(2*std::acos(q[3]));
                
                v[0] = q[0] * invSinc;
                v[1] = q[1] * invSinc;
                v[2] = q[2] * invSinc;
    
            }
            return v;
        }
    
        /** \brief The derivative of the inverse of the exponential map, evaluated at q */
    
        static Dune::FieldMatrix<T,3,4> DexpInv(const Rotation<T,3>& q) {
    
            
            // Compute v = exp^{-1} q
            Dune::FieldVector<T,3> v = expInv(q);
    
            // The derivative of exp at v
    
            Dune::FieldMatrix<T,4,3> A = Dexp(SkewMatrix<T,3>(v));
    
    
            // Compute the Moore-Penrose pseudo inverse  A^+ = (A^T A)^{-1} A^T
            Dune::FieldMatrix<T,3,3> ATA;
    
            for (int i=0; i<3; i++)
                for (int j=0; j<3; j++) {
                    ATA[i][j] = 0;
                    for (int k=0; k<4; k++)
                        ATA[i][j] += A[k][i] * A[k][j];
                }
    
            ATA.invert();
    
            Dune::FieldMatrix<T,3,4> APseudoInv;
            for (int i=0; i<3; i++)
                for (int j=0; j<4; j++) {
                    APseudoInv[i][j] = 0;
                    for (int k=0; k<3; k++)
                        APseudoInv[i][j] += ATA[i][k] * A[j][k];
                }
    
            return APseudoInv;
        }
    
    
        /** \brief The cayley mapping from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$. 
    
         *
         *  The formula is taken from 'J.C.Simo, N.Tarnom, M.Doblare - Non-linear dynamics of
         *  three-dimensional rods:Exact energy and momentum conserving algorithms'
         *  (but the corrected version with 0.25 instead of 0.5 in the denominator)
         */
    
        static Rotation<T,3> cayley(const SkewMatrix<T,3>& s) {
            Rotation<T,3> q;
    
            Dune::FieldVector<T,3> vAxial = s.axial();
    
            T norm = 0.25*vAxial.two_norm2() + 1;
            
            Dune::FieldMatrix<T,3,3> mat = s.toMatrix();
            mat *= 0.5;
    
            Dune::FieldMatrix<T,3,3> skewSquare = mat;
            skewSquare.rightmultiply(mat);
    
            mat += skewSquare;
            mat *= 2/norm;
    
            for (int i=0;i<3;i++)
                mat[i][i] += 1;
    
            q.set(mat);
            return q;
        }
        
    
         *
         *  The formula is taken from J.M.Selig - Cayley Maps for SE(3).
         */
    
        static SkewMatrix<T,3>  cayleyInv(const Rotation<T,3> q) {
    
           
            Dune::FieldMatrix<T,3,3> mat;
    
            // compute the trace of the rotation matrix
    
            T trace = -q[0]*q[0] -q[1]*q[1] -q[2]*q[2]+3*q[3]*q[3];  
    
    Youett, Jonathan's avatar
    Youett, Jonathan committed
            if ( (trace+1)>1e-6 || (trace+1)<-1e-6) { // if this term doesn't vanish we can use a direct formula
    
                q.matrix(mat);
    
                Rotation<T,3>(q.inverse()).matrix(matT);
    
    Youett, Jonathan's avatar
    Youett, Jonathan committed
                mat *= 2/(1+trace);
    
            }
            else { // use the formula that involves the computation of an inverse
                Dune::FieldMatrix<T,3,3> inv;
    
                q.matrix(inv);
    
                Dune::FieldMatrix<T,3,3> notInv = inv;
                
                for (int i=0;i<3;i++) {
                    inv[i][i] +=1;
                    notInv[i][i] -=1;
                }
                inv.invert();
                mat = notInv.leftmultiply(inv);
                mat *= 2;
            }
    
            // result is a skew symmetric matrix
    
            SkewMatrix<T,3> res;
    
            res.axial()[0] = mat[2][1]; 
            res.axial()[1] = mat[0][2]; 
            res.axial()[2] = mat[1][0];
        
            return res; 
    
        }
    
    
        static T distance(const Rotation<T,3>& a, const Rotation<T,3>& b) {
    
    Oliver Sander's avatar
    Oliver Sander committed
            Quaternion<T> diff = a;
    
            diff.invert();
            diff = diff.mult(b);
    
    
            // Make sure we do the right thing if a and b are not in the same sheet
            // of the double covering of the unit quaternions over SO(3)
    
    Youett, Jonathan's avatar
    Youett, Jonathan committed
            T dist = 2*std::acos( std::min(diff[3],1.0) );
    
    
            if (dist>=M_PI)
    
    Oliver Sander's avatar
    Oliver Sander committed
            // Compute the geodesical distance between a and b on SO(3)
            // Due to numerical dirt, diff[3] may be larger than 1. 
            // In that case, use 1 instead of diff[3].
    
            return 2*std::acos( std::min(diff[3],1.0) );
    
    Oliver Sander's avatar
    Oliver Sander committed
        }
    
    
        /** \brief Compute the vector in T_aSO(3) that is mapped by the exponential map
            to the geodesic from a to b
        */
    
        static SkewMatrix<T,3> difference(const Rotation<T,3>& a, const Rotation<T,3>& b) {
    
    
            Quaternion<T> diff = a;
            diff.invert();
            diff = diff.mult(b);
    
            // Compute the geodesical distance between a and b on SO(3)
            // Due to numerical dirt, diff[3] may be larger than 1. 
            // In that case, use 1 instead of diff[3].
            Dune::FieldVector<T,3> v;
            if (diff[3] > 1.0) {
    
                v = 0;
    
            } else {
                
    
    
                // Make sure we do the right thing if a and b are not in the same sheet
                // of the double covering of the unit quaternions over SO(3)
                if (dist>=M_PI) {
                    dist -= M_PI;
                    diff *= -1;
                }
    
    
                T invSinc = 1/sincHalf(dist);
                
                // Compute difference on T_a SO(3)
                v[0] = diff[0] * invSinc;
                v[1] = diff[1] * invSinc;
                v[2] = diff[2] * invSinc;
    
            }
    
    
        /** \brief Compute the derivatives of the director vectors with respect to the quaternion coordinates
         * 
         * Let \f$ d_k(q) = (d_{k,1}, d_{k,2}, d_{k,3})\f$ be the k-th director vector at \f$ q \f$.
         * Then the return value of this method is
         * \f[ A_{ijk} = \frac{\partial d_{i,j}}{\partial q_k} \f]
         */
    
        void getFirstDerivativesOfDirectors(Tensor3<T,3, 3, 4>& dd_dq) const
    
        {
            const Quaternion<T>& q = (*this);
    
            dd_dq[0][0][0] =  2*q[0];  dd_dq[0][0][1] = -2*q[1];  dd_dq[0][0][2] = -2*q[2];  dd_dq[0][0][3] =  2*q[3];
            dd_dq[0][1][0] =  2*q[1];  dd_dq[0][1][1] =  2*q[0];  dd_dq[0][1][2] =  2*q[3];  dd_dq[0][1][3] =  2*q[2];
            dd_dq[0][2][0] =  2*q[2];  dd_dq[0][2][1] = -2*q[3];  dd_dq[0][2][2] =  2*q[0];  dd_dq[0][2][3] = -2*q[1];
    
            dd_dq[1][0][0] =  2*q[1];  dd_dq[1][0][1] =  2*q[0];  dd_dq[1][0][2] = -2*q[3];  dd_dq[1][0][3] = -2*q[2];
            dd_dq[1][1][0] = -2*q[0];  dd_dq[1][1][1] =  2*q[1];  dd_dq[1][1][2] = -2*q[2];  dd_dq[1][1][3] =  2*q[3];
            dd_dq[1][2][0] =  2*q[3];  dd_dq[1][2][1] =  2*q[2];  dd_dq[1][2][2] =  2*q[1];  dd_dq[1][2][3] =  2*q[0];
    
            dd_dq[2][0][0] =  2*q[2];  dd_dq[2][0][1] =  2*q[3];  dd_dq[2][0][2] =  2*q[0];  dd_dq[2][0][3] =  2*q[1];
            dd_dq[2][1][0] = -2*q[3];  dd_dq[2][1][1] =  2*q[2];  dd_dq[2][1][2] =  2*q[1];  dd_dq[2][1][3] = -2*q[0];
            dd_dq[2][2][0] = -2*q[0];  dd_dq[2][2][1] = -2*q[1];  dd_dq[2][2][2] =  2*q[2];  dd_dq[2][2][3] =  2*q[3];
    
        }
    
        static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,3>& p, 
                                                                          const Rotation<T,3>& q) {
    
            Rotation<T,3> pInv = p;
    
            pInv.invert();
            
            // the forth component of pInv times q
    
            T pInvq_4 = - pInv[0]*q[0] - pInv[1]*q[1] - pInv[2]*q[2] + pInv[3]*q[3];
    
            T arccosSquaredDer_pInvq_4 = derivativeOfArcCosSquared(pInvq_4);
    
            
            EmbeddedTangentVector result;
    
            result[0] = -4 * arccosSquaredDer_pInvq_4 * pInv[0];
            result[1] = -4 * arccosSquaredDer_pInvq_4 * pInv[1];
            result[2] = -4 * arccosSquaredDer_pInvq_4 * pInv[2];
            result[3] =  4 * arccosSquaredDer_pInvq_4 * pInv[3];
    
            // project onto the tangent space at q
            EmbeddedTangentVector projectedResult = result;
            projectedResult.axpy(-1*(q*result), q);
            
    
            assert(std::fabs(projectedResult * q) < 1e-7);
            
    
    
        /** \brief Compute the Hessian of the squared distance function keeping the first argument fixed
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Dune::FieldMatrix<T,4,4> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
            // use the functionality from the unitvector class
    
            Dune::FieldMatrix<T,4,4> result = UnitVector<T,4>::secondDerivativeOfDistanceSquaredWRTSecondArgument(p.globalCoordinates(),
    
                                                                                                                     q.globalCoordinates());
            // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
            // is twice the corresponding distance on the unit quaternions seen as a sphere.  Hence the derivative of the
            // squared distance needs to be multiplied by 4.
            result *= 4;
            return result;
        }
        
        /** \brief Compute the mixed second derivate \partial d^2 / \partial da db
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Dune::FieldMatrix<T,4,4> secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
            // use the functionality from the unitvector class
    
            Dune::FieldMatrix<T,4,4> result = UnitVector<T,4>::secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(p.globalCoordinates(),
    
                                                                                                                             q.globalCoordinates());
            // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
            // is twice the corresponding distance on the unit quaternions seen as a sphere.  Hence the derivative of the
            // squared distance needs to be multiplied by 4.
            result *= 4;
            return result;
        }
        
        /** \brief Compute the third derivative \partial d^3 / \partial dq^3
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Tensor3<T,4,4,4> thirdDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
            // use the functionality from the unitvector class
    
            Tensor3<T,4,4,4> result = UnitVector<T,4>::thirdDerivativeOfDistanceSquaredWRTSecondArgument(p.globalCoordinates(),
    
                                                                                                            q.globalCoordinates());
            // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
            // is twice the corresponding distance on the unit quaternions seen as a sphere.  Hence the derivative of the
            // squared distance needs to be multiplied by 4.
            result *= 4;
            return result;
        }
        
        /** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Tensor3<T,4,4,4> thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
            // use the functionality from the unitvector class
    
            Tensor3<T,4,4,4> result = UnitVector<T,4>::thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(p.globalCoordinates(),
    
                                                                                                                      q.globalCoordinates());
            // for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
            // is twice the corresponding distance on the unit quaternions seen as a sphere.  Hence the derivative of the
            // squared distance needs to be multiplied by 4.
            result *= 4;
            return result;
        }
    
    
    
    
        /** \brief Interpolate between two rotations */
    
        static Rotation<T,3> interpolate(const Rotation<T,3>& a, const Rotation<T,3>& b, T omega) {
    
            SkewMatrix<T,3> v = difference(a,b);
    
            return a.mult(exp(v));
    
        }
    
        /** \brief Interpolate between two rotations 
            \param omega must be between 0 and 1
        */
    
        static Quaternion<T> interpolateDerivative(const Rotation<T,3>& a, const Rotation<T,3>& b, 
    
            Quaternion<T> result(0);
    
            // Compute difference on T_a SO(3)
    
            SkewMatrix<T,3> xi = difference(a,b);
    
            v *= omega;
            
            // //////////////////////////////////////////////////////////////
            //   v now contains the derivative at 'a'.  The derivative at
            //   the requested site is v pushed forward by Dexp.
            // /////////////////////////////////////////////////////////////
    
    
            Dune::FieldMatrix<T,4,3> diffExp = Dexp(v);
    
            diffExp.umv(xi.axial(),result);
    
    
            return a.Quaternion<T>::mult(result);
        }
    
        /** \brief Return the corresponding orthogonal matrix */
        void matrix(Dune::FieldMatrix<T,3,3>& m) const {
    
            m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
            m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
    
            m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
            m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
    
            m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
            m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
            m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
    
        }
    
        /** \brief Set rotation from orthogonal matrix 
    
        We tacitly assume that the matrix really is orthogonal */
        void set(const Dune::FieldMatrix<T,3,3>& m) {
    
            // Easier writing
            Dune::FieldVector<T,4>& p = (*this);
            // The following equations for the derivation of a unit quaternion from a rotation
            // matrix comes from 'E. Salamin, Application of Quaternions to Computation with
            // Rotations, Technical Report, Stanford, 1974'
    
            p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4;
            p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4;
            p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4;
            p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4;
    
            // avoid rounding problems
            if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) {
    
                p[0] = std::sqrt(p[0]);
    
                // r_x r_y = (R_12 + R_21) / 4
                p[1] = (m[0][1] + m[1][0]) / 4 / p[0];
    
                // r_x r_z = (R_13 + R_31) / 4
                p[2] = (m[0][2] + m[2][0]) / 4 / p[0];
    
                // r_0 r_x = (R_32 - R_23) / 4
                p[3] = (m[2][1] - m[1][2]) / 4 / p[0]; 
    
            } else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) {
    
                p[1] = std::sqrt(p[1]);
    
                // r_x r_y = (R_12 + R_21) / 4
                p[0] = (m[0][1] + m[1][0]) / 4 / p[1];
    
                // r_y r_z = (R_23 + R_32) / 4
                p[2] = (m[1][2] + m[2][1]) / 4 / p[1];
    
                // r_0 r_y = (R_13 - R_31) / 4
                p[3] = (m[0][2] - m[2][0]) / 4 / p[1]; 
    
            } else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) {
    
                p[2] = std::sqrt(p[2]);
    
                // r_x r_z = (R_13 + R_31) / 4
                p[0] = (m[0][2] + m[2][0]) / 4 / p[2];
    
                // r_y r_z = (R_23 + R_32) / 4
                p[1] = (m[1][2] + m[2][1]) / 4 / p[2];
    
                // r_0 r_z = (R_21 - R_12) / 4
                p[3] = (m[1][0] - m[0][1]) / 4 / p[2]; 
    
            } else {
    
                p[3] = std::sqrt(p[3]);
    
                // r_0 r_x = (R_32 - R_23) / 4
                p[0] = (m[2][1] - m[1][2]) / 4 / p[3];
    
                // r_0 r_y = (R_13 - R_31) / 4
                p[1] = (m[0][2] - m[2][0]) / 4 / p[3];
    
                // r_0 r_z = (R_21 - R_12) / 4
                p[2] = (m[1][0] - m[0][1]) / 4 / p[3]; 
    
            }
    
        }
    
        /** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together
            with this one.
    
            This is used to compute the strain in rod problems.  
            See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in
            Rod Mechanics', page 83 
        */
        Quaternion<T> B(int m) const {
            assert(m>=0 && m<3);
            Quaternion<T> r;
            if (m==0) {
                r[0] =  (*this)[3];
                r[1] =  (*this)[2];
                r[2] = -(*this)[1];
                r[3] = -(*this)[0];
            } else if (m==1) {
                r[0] = -(*this)[2];
                r[1] =  (*this)[3];
                r[2] =  (*this)[0];
                r[3] = -(*this)[1];
            } else {
                r[0] =  (*this)[1];
                r[1] = -(*this)[0];
                r[2] =  (*this)[3];
                r[3] = -(*this)[2];
            } 
    
            return r;
        }
    
        /** \brief Project tangent vector of R^n onto the tangent space */
        EmbeddedTangentVector projectOntoTangentSpace(const EmbeddedTangentVector& v) const {
            EmbeddedTangentVector result = v;
            EmbeddedTangentVector data = *this;
            result.axpy(-1*(data*result), data);
            return result;
        }
        
        /** \brief The global coordinates, if you really want them */
        const CoordinateType& globalCoordinates() const {
            return *this;
        }
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        /** \brief Compute an orthonormal basis of the tangent space of SO(3). */
    
        Dune::FieldMatrix<T,3,4> orthonormalFrame() const {
            Dune::FieldMatrix<T,3,4> result;