Newer
Older
#ifndef QUATERNION_HH
#define QUATERNION_HH
#include <dune/common/fvector.hh>
#include <dune/common/exceptions.hh>
template <class T>
class Quaternion : public Dune::FieldVector<T,4>
{
/** \brief Computes sin(x/2) / x without getting unstable for small x */
static T sincHalf(const T& x) {
return (x < 1e-4) ? 0.5 + (x*x/48) : std::sin(x/2)/x;
}
/** \brief Default constructor */
/** \brief Constructor with the four components */
Quaternion(const T& a, const T& b, const T& c, const T& d) {
(*this)[0] = a;
(*this)[1] = b;
(*this)[2] = c;
(*this)[3] = d;
}
/** \brief Constructor from a single scalar */
Quaternion(const T& a) : Dune::FieldVector<T,4>(a) {}
Quaternion(const Dune::FieldVector<T,4>& other) : Dune::FieldVector<T,4>(other) {}
/** \brief Constructor with rotation axis and angle */
Quaternion(Dune::FieldVector<T,3> axis, T angle) {
axis /= axis.two_norm();
axis *= std::sin(angle/2);
(*this)[0] = axis[0];
(*this)[1] = axis[1];
(*this)[2] = axis[2];
(*this)[3] = std::cos(angle/2);
}

Oliver Sander
committed
/** \brief Assignment from a scalar */
Quaternion<T>& operator=(const T& v) {
for (int i=0; i<4; i++)
(*this)[i] = v;
return (*this);
}
/** \brief Return the identity element */
static Quaternion<T> identity() {
Quaternion<T> id;
id[0] = 0;
id[1] = 0;
id[2] = 0;
id[3] = 1;
return id;
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/
static Quaternion<T> exp(const Dune::FieldVector<T,3>& v) {
return exp(v[0], v[1], v[2]);
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/
static Quaternion<T> exp(const T& v0, const T& v1, const T& v2) {
Quaternion<T> q;
T normV = std::sqrt(v0*v0 + v1*v1 + v2*v2);
// Stabilization for small |v| due to Grassia
q[0] = sin * v0;
q[1] = sin * v1;
q[2] = sin * v2;
q[3] = std::cos(normV/2);
return q;
}
static Dune::FieldMatrix<T,4,3> Dexp(const Dune::FieldVector<T,3>& v) {
Dune::FieldMatrix<T,4,3> result(0);
T norm = v.two_norm();
for (int i=0; i<3; i++) {
for (int m=0; m<3; m++) {
result[m][i] = (norm==0)
/** \todo Isn't there a better way to implement this stably? */
? 0.5 * (i==m)
: 0.5 * std::cos(norm/2) * v[i] * v[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - v[i]*v[m]/(norm*norm));
}
result[3][i] = - 0.5 * sincHalf(norm) * v[i];
}
return result;
}
static void DDexp(const Dune::FieldVector<T,3>& v,
Dune::array<Dune::FieldMatrix<T,3,3>, 4>& result) {
T norm = v.two_norm();
if (norm==0) {
for (int m=0; m<4; m++)
result[m] = 0;
for (int i=0; i<3; i++)
result[3][i][i] = -0.25;
} else {
for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) {
for (int m=0; m<3; m++) {

Oliver Sander
committed
result[m][i][j] = -0.25*std::sin(norm/2)*v[i]*v[j]*v[m]/(norm*norm*norm)
+ ((i==j)*v[m] + (j==m)*v[i] + (i==m)*v[j] - 3*v[i]*v[j]*v[m]/(norm*norm))
* (0.5*std::cos(norm/2) - sincHalf(norm)) / (norm*norm);

Oliver Sander
committed
result[3][i][j] = -0.5/(norm*norm)
* ( 0.5*std::cos(norm/2)*v[i]*v[j] + std::sin(norm/2) * ((i==j)*norm - v[i]*v[j]/norm));
}
}
}
}

Oliver Sander
committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/** \brief The inverse of the exponential map */
static Dune::FieldVector<T,3> expInv(const Quaternion<T>& q) {
// Compute v = exp^{-1} q
// Due to numerical dirt, q[3] may be larger than 1.
// In that case, use 1 instead of q[3].
Dune::FieldVector<T,3> v;
if (q[3] > 1.0) {
v = 0;
} else {
T invSinc = 1/sincHalf(2*std::acos(q[3]));
v[0] = q[0] * invSinc;
v[1] = q[1] * invSinc;
v[2] = q[2] * invSinc;
}
return v;
}
/** \brief The derivative of the inverse of the exponential map, evaluated at q */
static Dune::FieldMatrix<T,3,4> DexpInv(const Quaternion<T>& q) {
// Compute v = exp^{-1} q
Dune::FieldVector<T,3> v = expInv(q);
// The derivative of exp at v
Dune::FieldMatrix<T,4,3> A = Dexp(v);
// Compute the Moore-Penrose pseudo inverse A^+ = (A^T A)^{-1} A^T
Dune::FieldMatrix<T,3,3> ATA;
for (int i=0; i<3; i++)
for (int j=0; j<3; j++) {
ATA[i][j] = 0;
for (int k=0; k<4; k++)
ATA[i][j] += A[k][i] * A[k][j];
}
ATA.invert();
Dune::FieldMatrix<T,3,4> APseudoInv;
for (int i=0; i<3; i++)
for (int j=0; j<4; j++) {
APseudoInv[i][j] = 0;
for (int k=0; k<3; k++)
APseudoInv[i][j] += ATA[i][k] * A[j][k];
}
return APseudoInv;
}
Quaternion<T> mult(const Quaternion<T>& other) const {
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
Quaternion<T> q;
q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
return q;
}
/** \brief Return the tripel of director vectors represented by a unit quaternion
The formulas are taken from Dichmann, Li, Maddocks, (2.6.4), (2.6.5), (2.6.6)
*/
Dune::FieldVector<T,3> director(int i) const {
Dune::FieldVector<T,3> d;
const Dune::FieldVector<T,4>& q = *this; // simpler notation
if (i==0) {
d[0] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
d[1] = 2 * (q[0]*q[1] + q[2]*q[3]);
d[2] = 2 * (q[0]*q[2] - q[1]*q[3]);
} else if (i==1) {
d[0] = 2 * (q[0]*q[1] - q[2]*q[3]);
d[1] = -q[0]*q[0] + q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
d[2] = 2 * (q[1]*q[2] + q[0]*q[3]);
} else if (i==2) {
d[0] = 2 * (q[0]*q[2] + q[1]*q[3]);
d[1] = 2 * (q[1]*q[2] - q[0]*q[3]);
d[2] = -q[0]*q[0] - q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
} else
DUNE_THROW(Dune::Exception, "Nonexisting director " << i << " requested!");
return d;
}
void getFirstDerivativesOfDirectors(Dune::array<Dune::FieldMatrix<double,3 , 4>, 3>& dd_dq) const
{
const Quaternion<T>& q = (*this);
dd_dq[0][0][0] = 2*q[0]; dd_dq[0][0][1] = -2*q[1]; dd_dq[0][0][2] = -2*q[2]; dd_dq[0][0][3] = 2*q[3];
dd_dq[0][1][0] = 2*q[1]; dd_dq[0][1][1] = 2*q[0]; dd_dq[0][1][2] = 2*q[3]; dd_dq[0][1][3] = 2*q[2];
dd_dq[0][2][0] = 2*q[2]; dd_dq[0][2][1] = -2*q[3]; dd_dq[0][2][2] = 2*q[0]; dd_dq[0][2][3] = -2*q[1];
dd_dq[1][0][0] = 2*q[1]; dd_dq[1][0][1] = 2*q[0]; dd_dq[1][0][2] = -2*q[3]; dd_dq[1][0][3] = -2*q[2];
dd_dq[1][1][0] = -2*q[0]; dd_dq[1][1][1] = 2*q[1]; dd_dq[1][1][2] = -2*q[2]; dd_dq[1][1][3] = 2*q[3];
dd_dq[1][2][0] = 2*q[3]; dd_dq[1][2][1] = 2*q[2]; dd_dq[1][2][2] = 2*q[1]; dd_dq[1][2][3] = 2*q[0];
dd_dq[2][0][0] = 2*q[2]; dd_dq[2][0][1] = 2*q[3]; dd_dq[2][0][2] = 2*q[0]; dd_dq[2][0][3] = 2*q[1];
dd_dq[2][1][0] = -2*q[3]; dd_dq[2][1][1] = 2*q[2]; dd_dq[2][1][2] = 2*q[1]; dd_dq[2][1][3] = -2*q[0];
dd_dq[2][2][0] = -2*q[0]; dd_dq[2][2][1] = -2*q[1]; dd_dq[2][2][2] = 2*q[2]; dd_dq[2][2][3] = 2*q[3];
}
/** \brief Turn quaternion into a unit quaternion by dividing by its Euclidean norm */
void normalize() {
(*this) /= this->two_norm();
}
Dune::FieldVector<double,3> rotate(const Dune::FieldVector<double,3>& v) const {
Dune::FieldVector<double,3> result;
Dune::FieldVector<double,3> d0 = director(0);
Dune::FieldVector<double,3> d1 = director(1);
Dune::FieldVector<double,3> d2 = director(2);
for (int i=0; i<3; i++)
result[i] = v[0]*d0[i] + v[1]*d1[i] + v[2]*d2[i];
return result;
}

Oliver Sander
committed
/** \brief Conjugate the quaternion */
void conjugate() {
(*this)[0] *= -1;
(*this)[1] *= -1;
(*this)[2] *= -1;

Oliver Sander
committed
}
/** \brief Invert the quaternion */
void invert() {
conjugate();
(*this) /= this->two_norm2();

Oliver Sander
committed
static Dune::FieldVector<T,3> difference(const Quaternion<T>& a, const Quaternion<T>& b) {
Quaternion<T> diff = a;
diff.invert();
diff = diff.mult(b);
// Compute the geodesical distance between a and b on SO(3)
// Due to numerical dirt, diff[3] may be larger than 1.
// In that case, use 1 instead of diff[3].
Dune::FieldVector<T,3> v;
if (diff[3] > 1.0) {
v = 0;
} else {
T dist = 2*std::acos( std::min(diff[3],1.0) );
T invSinc = 1/sincHalf(dist);
// Compute difference on T_a SO(3)
v[0] = diff[0] * invSinc;
v[1] = diff[1] * invSinc;
v[2] = diff[2] * invSinc;
}
/** \brief Interpolate between two rotations */
static Quaternion<T> interpolate(const Quaternion<T>& a, const Quaternion<T>& b, double omega) {
// Compute difference on T_a SO(3)
Dune::FieldVector<T,3> v = difference(a,b);
v *= omega;
return a.mult(exp(v[0], v[1], v[2]));
}
/** \brief Interpolate between two rotations
\param omega must be between 0 and 1
\todo I'd say this method is incorrect and is other one is correct.
The solver works much better with this one, though. I don't get it.
*/
static Quaternion<T> interpolateDerivative(const Quaternion<T>& a, const Quaternion<T>& b,

Oliver Sander
committed
double omega) {
Quaternion<T> result(0);

Oliver Sander
committed
Dune::FieldVector<double,3> xi = difference(a,b);

Oliver Sander
committed
Dune::FieldVector<double,3> v = xi;
v *= omega;
// //////////////////////////////////////////////////////////////
// v now contains the derivative at 'a'. The derivative at
// the requested site is v pushed forward by Dexp.
// /////////////////////////////////////////////////////////////
Dune::FieldMatrix<double,4,3> diffExp = Quaternion<double>::Dexp(v);

Oliver Sander
committed
diffExp.umv(xi,result);
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
return a.mult(result);
}
/** \brief Interpolate between two rotations
\param omega must be between 0 and 1
*/
static Quaternion<T> interpolateDerivative(const Quaternion<T>& a, const Quaternion<T>& b,
double omega, double intervalLength) {
Quaternion<T> result(0);
// Compute difference on T_a SO(3)
Dune::FieldVector<double,3> xi = difference(a,b);
xi /= intervalLength;
Dune::FieldVector<double,3> v = xi;
v *= omega;
// //////////////////////////////////////////////////////////////
// v now contains the derivative at 'a'. The derivative at
// the requested site is v pushed forward by Dexp.
// /////////////////////////////////////////////////////////////
Dune::FieldMatrix<double,4,3> diffExp = Quaternion<double>::Dexp(v);
diffExp.umv(xi,result);
return a.mult(result);
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
/** \brief Return the corresponding orthogonal matrix */
void matrix(Dune::FieldMatrix<T,3,3>& m) const {
m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
}
/** \brief Set unit quaternion from orthogonal matrix
We tacitly assume that the matrix really is orthogonal */
void set(const Dune::FieldMatrix<T,3,3>& m) {
// Easier writing
Dune::FieldVector<T,4>& p = (*this);
// The following equations for the derivation of a unit quaternion from a rotation
// matrix comes from 'E. Salamin, Application of Quaternions to Computation with
// Rotations, Technical Report, Stanford, 1974'
p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4;
p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4;
p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4;
p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4;
// avoid rounding problems
if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) {
p[0] = std::sqrt(p[0]);
// r_x r_y = (R_12 + R_21) / 4
p[1] = (m[0][1] + m[1][0]) / 4 / p[0];
// r_x r_z = (R_13 + R_31) / 4
p[2] = (m[0][2] + m[2][0]) / 4 / p[0];
// r_0 r_x = (R_32 - R_23) / 4
p[3] = (m[2][1] - m[1][2]) / 4 / p[0];
} else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) {
p[1] = std::sqrt(p[1]);
// r_x r_y = (R_12 + R_21) / 4
p[0] = (m[0][1] + m[1][0]) / 4 / p[1];
// r_y r_z = (R_23 + R_32) / 4
p[2] = (m[1][2] + m[2][1]) / 4 / p[1];
// r_0 r_y = (R_13 - R_31) / 4
p[3] = (m[0][2] - m[2][0]) / 4 / p[1];
} else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) {
p[2] = std::sqrt(p[2]);
// r_x r_z = (R_13 + R_31) / 4
p[0] = (m[0][2] + m[2][0]) / 4 / p[2];
// r_y r_z = (R_23 + R_32) / 4
p[1] = (m[1][2] + m[2][1]) / 4 / p[2];
// r_0 r_z = (R_21 - R_12) / 4
p[3] = (m[1][0] - m[0][1]) / 4 / p[2];
} else {
p[3] = std::sqrt(p[3]);
// r_0 r_x = (R_32 - R_23) / 4
p[0] = (m[2][1] - m[1][2]) / 4 / p[3];
// r_0 r_y = (R_13 - R_31) / 4
p[1] = (m[0][2] - m[2][0]) / 4 / p[3];
// r_0 r_z = (R_21 - R_12) / 4
p[2] = (m[1][0] - m[0][1]) / 4 / p[3];
}
}
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
/** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together
with this one.
This is used to compute the strain in rod problems.
See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in
Rod Mechanics', page 83
*/
Quaternion<T> B(int m) const {
assert(m>=0 && m<3);
Quaternion<T> r;
if (m==0) {
r[0] = (*this)[3];
r[1] = (*this)[2];
r[2] = -(*this)[1];
r[3] = -(*this)[0];
} else if (m==1) {
r[0] = -(*this)[2];
r[1] = (*this)[3];
r[2] = (*this)[0];
r[3] = -(*this)[1];
} else {
r[0] = (*this)[1];
r[1] = -(*this)[0];
r[2] = (*this)[3];
r[3] = -(*this)[2];
}
return r;
}