Newer
Older
#ifndef QUATERNION_HH
#define QUATERNION_HH
#include <dune/common/fvector.hh>
#include <dune/common/exceptions.hh>
template <class T>
class Quaternion : public Dune::FieldVector<T,4>
{
/** \brief Computes sin(x/2) / x without getting unstable for small x */
static T sincHalf(const T& x) {
return (x < 1e-4) ? 0.5 + (x*x/48) : std::sin(x/2)/x;
}
/** \brief Default constructor */
/** \brief Constructor with the four components */
Quaternion(const T& a, const T& b, const T& c, const T& d) {
(*this)[0] = a;
(*this)[1] = b;
(*this)[2] = c;
(*this)[3] = d;
}
Quaternion(const Dune::FieldVector<T,4>& other) : Dune::FieldVector<T,4>(other) {}
/** \brief Constructor with rotation axis and angle */
Quaternion(Dune::FieldVector<T,3> axis, T angle) {
axis /= axis.two_norm();
axis *= std::sin(angle/2);
(*this)[0] = axis[0];
(*this)[1] = axis[1];
(*this)[2] = axis[2];
(*this)[3] = std::cos(angle/2);
}
/** \brief Return the identity element */
static Quaternion<T> identity() {
Quaternion<T> id;
id[0] = 0;
id[1] = 0;
id[2] = 0;
id[3] = 1;
return id;
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/
static Quaternion<T> exp(const Dune::FieldVector<T,3>& v) {
return exp(v[0], v[1], v[2]);
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/
static Quaternion<T> exp(const T& v0, const T& v1, const T& v2) {
Quaternion<T> q;
T normV = std::sqrt(v0*v0 + v1*v1 + v2*v2);
// Stabilization for small |v| due to Grassia
q[0] = sin * v0;
q[1] = sin * v1;
q[2] = sin * v2;
q[3] = std::cos(normV/2);
return q;
}
static Dune::FieldMatrix<T,4,3> Dexp(const Dune::FieldVector<T,3>& v) {
Dune::FieldMatrix<T,4,3> result(0);
T norm = v.two_norm();
for (int i=0; i<3; i++) {
for (int m=0; m<3; m++) {
result[m][i] = (norm==0)
/** \todo Isn't there a better way to implement this stably? */
? 0.5 * (i==m)
: 0.5 * std::cos(norm/2) * v[i] * v[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - v[i]*v[m]/(norm*norm));
}
result[3][i] = - 0.5 * sincHalf(norm) * v[i];
}
return result;
}
Quaternion<T> mult(const Quaternion<T>& other) const {
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
Quaternion<T> q;
q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
return q;
}
/** \brief Return the tripel of director vectors represented by a unit quaternion
The formulas are taken from Dichmann, Li, Maddocks, (2.6.4), (2.6.5), (2.6.6)
*/
Dune::FieldVector<T,3> director(int i) const {
Dune::FieldVector<T,3> d;
const Dune::FieldVector<T,4>& q = *this; // simpler notation
if (i==0) {
d[0] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
d[1] = 2 * (q[0]*q[1] + q[2]*q[3]);
d[2] = 2 * (q[0]*q[2] - q[1]*q[3]);
} else if (i==1) {
d[0] = 2 * (q[0]*q[1] - q[2]*q[3]);
d[1] = -q[0]*q[0] + q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
d[2] = 2 * (q[1]*q[2] + q[0]*q[3]);
} else if (i==2) {
d[0] = 2 * (q[0]*q[2] + q[1]*q[3]);
d[1] = 2 * (q[1]*q[2] - q[0]*q[3]);
d[2] = -q[0]*q[0] - q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
} else
DUNE_THROW(Dune::Exception, "Nonexisting director " << i << " requested!");
return d;
}
void getFirstDerivativesOfDirectors(Dune::array<Dune::FieldMatrix<double,3 , 4>, 3>& dd_dq) const
{
const Quaternion<T>& q = (*this);
dd_dq[0][0][0] = 2*q[0]; dd_dq[0][0][1] = -2*q[1]; dd_dq[0][0][2] = -2*q[2]; dd_dq[0][0][3] = 2*q[3];
dd_dq[0][1][0] = 2*q[1]; dd_dq[0][1][1] = 2*q[0]; dd_dq[0][1][2] = 2*q[3]; dd_dq[0][1][3] = 2*q[2];
dd_dq[0][2][0] = 2*q[2]; dd_dq[0][2][1] = -2*q[3]; dd_dq[0][2][2] = 2*q[0]; dd_dq[0][2][3] = -2*q[1];
dd_dq[1][0][0] = 2*q[1]; dd_dq[1][0][1] = 2*q[0]; dd_dq[1][0][2] = -2*q[3]; dd_dq[1][0][3] = -2*q[2];
dd_dq[1][1][0] = -2*q[0]; dd_dq[1][1][1] = 2*q[1]; dd_dq[1][1][2] = -2*q[2]; dd_dq[1][1][3] = 2*q[3];
dd_dq[1][2][0] = 2*q[3]; dd_dq[1][2][1] = 2*q[2]; dd_dq[1][2][2] = 2*q[1]; dd_dq[1][2][3] = 2*q[0];
dd_dq[2][0][0] = 2*q[2]; dd_dq[2][0][1] = 2*q[3]; dd_dq[2][0][2] = 2*q[0]; dd_dq[2][0][3] = 2*q[1];
dd_dq[2][1][0] = -2*q[3]; dd_dq[2][1][1] = 2*q[2]; dd_dq[2][1][2] = 2*q[1]; dd_dq[2][1][3] = -2*q[0];
dd_dq[2][2][0] = -2*q[0]; dd_dq[2][2][1] = -2*q[1]; dd_dq[2][2][2] = 2*q[2]; dd_dq[2][2][3] = 2*q[3];
}
void getFirstDerivativesOfDirectors(Dune::array<Dune::array<Dune::FieldVector<double,3>, 3>, 3>& dd_dvj) const
{
const Quaternion<T>& q = (*this);
// Contains \partial q / \partial v^i_j at v = 0
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
for (int j=0; j<3; j++) {
for (int m=0; m<4; m++)
dq_dvj[j][m] = (j==m) * 0.5;
}
// Contains \parder d \parder v_j
for (int j=0; j<3; j++) {
// d1
dd_dvj[0][j][0] = q[0]*(q.mult(dq_dvj[j]))[0] - q[1]*(q.mult(dq_dvj[j]))[1]
- q[2]*(q.mult(dq_dvj[j]))[2] + q[3]*(q.mult(dq_dvj[j]))[3];
dd_dvj[0][j][1] = (q.mult(dq_dvj[j]))[0]*q[1] + q[0]*(q.mult(dq_dvj[j]))[1]
+ (q.mult(dq_dvj[j]))[2]*q[3] + q[2]*(q.mult(dq_dvj[j]))[3];
dd_dvj[0][j][2] = (q.mult(dq_dvj[j]))[0]*q[2] + q[0]*(q.mult(dq_dvj[j]))[2]
- (q.mult(dq_dvj[j]))[1]*q[3] - q[1]*(q.mult(dq_dvj[j]))[3];
// d2
dd_dvj[1][j][0] = (q.mult(dq_dvj[j]))[0]*q[1] + q[0]*(q.mult(dq_dvj[j]))[1]
- (q.mult(dq_dvj[j]))[2]*q[3] - q[2]*(q.mult(dq_dvj[j]))[3];
dd_dvj[1][j][1] = - q[0]*(q.mult(dq_dvj[j]))[0] + q[1]*(q.mult(dq_dvj[j]))[1]
- q[2]*(q.mult(dq_dvj[j]))[2] + q[3]*(q.mult(dq_dvj[j]))[3];
dd_dvj[1][j][2] = (q.mult(dq_dvj[j]))[1]*q[2] + q[1]*(q.mult(dq_dvj[j]))[2]
+ (q.mult(dq_dvj[j]))[0]*q[3] + q[0]*(q.mult(dq_dvj[j]))[3];
// d3
dd_dvj[2][j][0] = (q.mult(dq_dvj[j]))[0]*q[2] + q[0]*(q.mult(dq_dvj[j]))[2]
+ (q.mult(dq_dvj[j]))[1]*q[3] + q[1]*(q.mult(dq_dvj[j]))[3];
dd_dvj[2][j][1] = (q.mult(dq_dvj[j]))[1]*q[2] + q[1]*(q.mult(dq_dvj[j]))[2]
- (q.mult(dq_dvj[j]))[0]*q[3] - q[0]*(q.mult(dq_dvj[j]))[3];
dd_dvj[2][j][2] = - q[0]*(q.mult(dq_dvj[j]))[0] - q[1]*(q.mult(dq_dvj[j]))[1]
+ q[2]*(q.mult(dq_dvj[j]))[2] + q[3]*(q.mult(dq_dvj[j]))[3];
dd_dvj[0][j] *= 2;
dd_dvj[1][j] *= 2;
dd_dvj[2][j] *= 2;
}
// Check: The derivatives of the directors must be orthogonal to the directors
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
assert (std::abs(q.director(i) * dd_dvj[i][j]) < 1e-7);
}
/** \brief Turn quaternion into a unit quaternion by dividing by its Euclidean norm */
void normalize() {
(*this) /= this->two_norm();
}
Dune::FieldVector<double,3> rotate(const Dune::FieldVector<double,3>& v) const {
Dune::FieldVector<double,3> result;
Dune::FieldVector<double,3> d0 = director(0);
Dune::FieldVector<double,3> d1 = director(1);
Dune::FieldVector<double,3> d2 = director(2);
for (int i=0; i<3; i++)
result[i] = v[0]*d0[i] + v[1]*d1[i] + v[2]*d2[i];
return result;
}
/** \brief Invert the quaternion */
void invert() {
(*this)[0] *= -1;
(*this)[1] *= -1;
(*this)[2] *= -1;
(*this) /= this->two_norm2();
}
static Dune::FieldVector<T,3> difference(const Quaternion<T>& a, const Quaternion<T>& b) {
Quaternion<T> diff = a;
diff.invert();
diff = diff.mult(b);
// Compute the geodesical distance between a and b on SO(3)
// Due to numerical dirt, diff[3] may be larger than 1.
// In that case, use 1 instead of diff[3].
Dune::FieldVector<T,3> v;
if (diff[3] > 1.0) {
v = 0;
} else {
T dist = 2*std::acos( std::min(diff[3],1.0) );
T invSinc = 1/sincHalf(dist);
// Compute difference on T_a SO(3)
v[0] = diff[0] * invSinc;
v[1] = diff[1] * invSinc;
v[2] = diff[2] * invSinc;
}
/** \brief Interpolate between two rotations */
static Quaternion<T> interpolate(const Quaternion<T>& a, const Quaternion<T>& b, double omega) {
// Compute difference on T_a SO(3)
Dune::FieldVector<T,3> v = difference(a,b);
v *= omega;
return a.mult(exp(v[0], v[1], v[2]));
}
/** \brief Interpolate between two rotations */
static Quaternion<T> interpolateDerivative(const Quaternion<T>& a, const Quaternion<T>& b,
double omega, double intervallLength) {
Quaternion<T> result;
Dune::FieldVector<double,3> v = difference(a,b);
Dune::FieldVector<double,3> der = v;
der /= intervallLength;
// //////////////////////////////////////////////////////////////
// v now contains the derivative at 'a'. The derivative at
// the requested site is v pushed forward by Dexp.
// /////////////////////////////////////////////////////////////
v *= omega;
Dune::FieldMatrix<double,4,3> diffExp = Quaternion<double>::Dexp(v);
result[0] = result[1] = result[2] = result[3] = 0;
diffExp.umv(der,result);
result = a.mult(result);
// ////////////////////////////////////////////////////////////////////////////
// Check correctness by comparing with a finite difference approximation
// ////////////////////////////////////////////////////////////////////////////
double eps = 1e-6;
Quaternion<T> fdResult = interpolate(a,b, omega+eps);
fdResult -= interpolate(a,b, omega-eps);
fdResult /= 2*eps;
fdResult /= intervallLength;
if ((result-fdResult).two_norm() > 1e-4) {
std::cout << "Wrong interpolation:\n";
std::cout << "Analytical: " << result << " fd: " << fdResult << std::endl;
abort();
}
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/** \brief Return the corresponding orthogonal matrix */
void matrix(Dune::FieldMatrix<T,3,3>& m) const {
m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
}
/** \brief Set unit quaternion from orthogonal matrix
We tacitly assume that the matrix really is orthogonal */
void set(const Dune::FieldMatrix<T,3,3>& m) {
// Easier writing
Dune::FieldVector<T,4>& p = (*this);
// The following equations for the derivation of a unit quaternion from a rotation
// matrix comes from 'E. Salamin, Application of Quaternions to Computation with
// Rotations, Technical Report, Stanford, 1974'
p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4;
p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4;
p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4;
p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4;
// avoid rounding problems
if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) {
p[0] = std::sqrt(p[0]);
// r_x r_y = (R_12 + R_21) / 4
p[1] = (m[0][1] + m[1][0]) / 4 / p[0];
// r_x r_z = (R_13 + R_31) / 4
p[2] = (m[0][2] + m[2][0]) / 4 / p[0];
// r_0 r_x = (R_32 - R_23) / 4
p[3] = (m[2][1] - m[1][2]) / 4 / p[0];
} else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) {
p[1] = std::sqrt(p[1]);
// r_x r_y = (R_12 + R_21) / 4
p[0] = (m[0][1] + m[1][0]) / 4 / p[1];
// r_y r_z = (R_23 + R_32) / 4
p[2] = (m[1][2] + m[2][1]) / 4 / p[1];
// r_0 r_y = (R_13 - R_31) / 4
p[3] = (m[0][2] - m[2][0]) / 4 / p[1];
} else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) {
p[2] = std::sqrt(p[2]);
// r_x r_z = (R_13 + R_31) / 4
p[0] = (m[0][2] + m[2][0]) / 4 / p[2];
// r_y r_z = (R_23 + R_32) / 4
p[1] = (m[1][2] + m[2][1]) / 4 / p[2];
// r_0 r_z = (R_21 - R_12) / 4
p[3] = (m[1][0] - m[0][1]) / 4 / p[2];
} else {
p[3] = std::sqrt(p[3]);
// r_0 r_x = (R_32 - R_23) / 4
p[0] = (m[2][1] - m[1][2]) / 4 / p[3];
// r_0 r_y = (R_13 - R_31) / 4
p[1] = (m[0][2] - m[2][0]) / 4 / p[3];
// r_0 r_z = (R_21 - R_12) / 4
p[2] = (m[1][0] - m[0][1]) / 4 / p[3];
}
}
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together
with this one.
This is used to compute the strain in rod problems.
See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in
Rod Mechanics', page 83
*/
Quaternion<T> B(int m) const {
assert(m>=0 && m<3);
Quaternion<T> r;
if (m==0) {
r[0] = (*this)[3];
r[1] = (*this)[2];
r[2] = -(*this)[1];
r[3] = -(*this)[0];
} else if (m==1) {
r[0] = -(*this)[2];
r[1] = (*this)[3];
r[2] = (*this)[0];
r[3] = -(*this)[1];
} else {
r[0] = (*this)[1];
r[1] = -(*this)[0];
r[2] = (*this)[3];
r[3] = -(*this)[2];
}
return r;
}