Skip to content
Snippets Groups Projects
rotation.hh 45 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef ROTATION_HH
    #define ROTATION_HH
    
    /** \file
        \brief Define rotations in Euclidean spaces
    */
    
    
    #include <dune/common/fvector.hh>
    #include <dune/common/fmatrix.hh>
    #include <dune/common/exceptions.hh>
    
    #include <dune/common/math.hh>
    
    #include <dune/gfe/tensor3.hh>
    #include <dune/gfe/unitvector.hh>
    
    #include <dune/gfe/skewmatrix.hh>
    
    #include <dune/gfe/symmetricmatrix.hh>
    
    template <class T, int dim>
    
    /** \brief Specialization for dim==2
    
        \tparam T The type used for coordinates
    
    */
    template <class T>
    
        /** \brief The type used for coordinates */
        typedef T ctype;
    
    
        /** \brief Dimension of the manifold formed by the 2d rotations */
        static const int dim = 1;
    
        /** \brief Coordinates are embedded in the euclidean space */
        static const int embeddedDim = 1;
    
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix */
        typedef Dune::FieldVector<T,1> TangentVector;
    
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix
    
        This vector is not really embedded in anything.  I have to make my notation more consistent! */
        typedef Dune::FieldVector<T,1> EmbeddedTangentVector;
    
    
        /** \brief The global convexity radius of the rotation group */
    
        static constexpr double convexityRadius = 0.5 * M_PI;
    
        /** \brief Default constructor, create the identity rotation */
    
        Rotation()
    
        Rotation(const T& angle)
            : angle_(angle)
        {}
    
    
        /** \brief Return the identity element */
    
        static Rotation<T,2> identity() {
    
            // Default constructor creates an identity
    
        static T distance(const Rotation<T,2>& a, const Rotation<T,2>& b) {
    
            T dist = a.angle_ - b.angle_;
            while (dist < 0)
                dist += 2*M_PI;
            while (dist > 2*M_PI)
                dist -= 2*M_PI;
    
            return (dist <= M_PI) ? dist : 2*M_PI - dist;
        }
    
    
        /** \brief The exponential map from a given point $p \in SO(3)$. */
    
        static Rotation<T,2> exp(const Rotation<T,2>& p, const TangentVector& v) {
            Rotation<T,2> result = p;
    
            result.angle_ += v;
            return result;
        }
    
    
        /** \brief The exponential map from \f$ \mathfrak{so}(2) \f$ to \f$ SO(2) \f$
         */
    
        static Rotation<T,2> exp(const Dune::FieldVector<T,1>& v) {
            Rotation<T,2> result;
    
            result.angle_ = v[0];
            return result;
        }
    
    
        static TangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,2>& a,
    
                                                                          const Rotation<T,2>& b) {
    
            // This assertion is here to remind me of the following laziness:
            // The difference has to be computed modulo 2\pi
    
            assert( std::abs(a.angle_ - b.angle_) <= M_PI );
    
            return -2 * (a.angle_ - b.angle_);
    
        static Dune::FieldMatrix<T,1,1> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,2>& a,
    
                                                                                                const Rotation<T,2>& b) {
    
        /** \brief Right multiplication */
    
        Rotation<T,2> mult(const Rotation<T,2>& other) const {
            Rotation<T,2> q = *this;
    
            q.angle_ += other.angle_;
            return q;
        }
    
        /** \brief Compute an orthonormal basis of the tangent space of SO(3).
    
        This basis is of course not globally continuous.
        */
        Dune::FieldMatrix<T,1,1> orthonormalFrame() const {
            return Dune::FieldMatrix<T,1,1>(1);
        }
    
        //private:
    
        // We store the rotation as an angle
    
    Oliver Sander's avatar
    Oliver Sander committed
    //! Send configuration to output stream
    template <class T>
    
    std::ostream& operator<< (std::ostream& s, const Rotation<T,2>& c)
    
    Oliver Sander's avatar
    Oliver Sander committed
      {
          return s << "[" << c.angle_ << "  (" << std::sin(c.angle_) << " " << std::cos(c.angle_) << ") ]";
      }
    
    
    /** \brief Specialization for dim==3
    
    
    Uses unit quaternion coordinates.
    
    Oliver Sander's avatar
    Oliver Sander committed
    \todo Reimplement the method inverse() such that it returns a Rotation instead of a Quaternion.
    Then remove the cast in the method setRotation, file averageinterface.hh
    
    class Rotation<T,3> : public Quaternion<T>
    
    {
    
        /** \brief Computes sin(x/2) / x without getting unstable for small x */
        static T sincHalf(const T& x) {
    
            using std::sin;
    
            return (x < 1e-1) ? 0.5 - (x*x/48)  + Dune::power(x,4)/3840 - Dune::power(x,6)/645120  : sin(x/2)/x;
    
        /** \brief Computes sin(sqrt(x)/2) / sqrt(x) without getting unstable for small x
         *
         * Using this somewhat exotic series allows to avoid a few calls to std::sqrt near 0,
         * which ADOL-C doesn't like.
         */
        static T sincHalfOfSquare(const T& x) {
    
            using std::sin;
            using std::sqrt;
            return (x < 1e-15) ? 0.5 - (x/48)  + (x*x)/(120*32) : sin(sqrt(x)/2)/sqrt(x);
    
        /** \brief Computes sin(sqrt(x)) / sqrt(x) without getting unstable for small x
         *
         * Using this somewhat exotic series allows to avoid a few calls to std::sqrt near 0,
         * which ADOL-C doesn't like.
         */
        static T sincOfSquare(const T& x) {
    
            using std::sin;
            using std::sqrt;
    
            // we need here lots of terms to be sure that the numerical derivatives are also within maschine precision
    
            return (x < 1e-2) ?
            1-x/6
            +x*x/120
            -Dune::power(x,3)/5040
            +Dune::power(x,4)/362880
            -Dune::power(x,5)/39916800
            +Dune::power(x,6)/6227020800
            -Dune::power(x,7)/1307674368000: sin(sqrt(x))/sqrt(x);
    
        /** \brief The type used for coordinates */
        typedef T ctype;
    
    
        /** \brief The type used for global coordinates */
    
        typedef Dune::FieldVector<T,4> CoordinateType;
    
        /** \brief Dimension of the manifold formed by the 3d rotations */
        static const int dim = 3;
    
        /** \brief Coordinates are embedded into a four-dimension Euclidean space */
        static const int embeddedDim = 4;
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix */
        typedef Dune::FieldVector<T,3> TangentVector;
    
    
        /** \brief A tangent vector as a vector in the surrounding coordinate space */
        typedef Quaternion<T> EmbeddedTangentVector;
    
    
        /** \brief The global convexity radius of the rotation group */
    
        static constexpr double convexityRadius = 0.5 * M_PI;
    
        /** \brief Default constructor creates the identity element */
        Rotation()
            : Quaternion<T>(0,0,0,1)
        {}
    
        explicit Rotation(const std::array<T,4>& c)
    
    Oliver Sander's avatar
    Oliver Sander committed
    
            *this /= this->two_norm();
    
        explicit Rotation(const Dune::FieldVector<T,4>& c)
    
    Oliver Sander's avatar
    Oliver Sander committed
        {
            *this /= this->two_norm();
        }
    
        Rotation(Dune::FieldVector<T,3> axis, T angle)
    
        {
            axis /= axis.two_norm();
            axis *= std::sin(angle/2);
            (*this)[0] = axis[0];
            (*this)[1] = axis[1];
            (*this)[2] = axis[2];
            (*this)[3] = std::cos(angle/2);
        }
    
        /** \brief Rebind the Rotation to another coordinate type */
        template<class U>
        struct rebind
        {
          typedef Rotation<U,3> other;
        };
    
    
        Rotation& operator= (const Dune::FieldVector<T,4>& other)
        {
          for (int i=0; i<4; i++)
            (*this)[i] = other[i];
          *this /= this->two_norm();
          return *this;
        }
    
    
        /** \brief Assignment from Rotation with different type -- used for automatic differentiation with ADOL-C */
    
        template <class T2>
        Rotation& operator <<= (const Rotation<T2,3>& other) {
            for (int i=0; i<4; i++)
                (*this)[i] <<= other[i];
            return *this;
        }
    
    
        /** \brief Return the identity element */
    
        static Rotation<T,3> identity() {
    
            // Default constructor creates an identity
    
        /** \brief Right multiplication */
        Rotation<T,3> mult(const Rotation<T,3>& other) const {
            Rotation<T,3> q;
            q[0] =   (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
            q[1] =   (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
            q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
            q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
    
            return q;
        }
    
    
        /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
         */
    
        static Rotation<T,3> exp(const SkewMatrix<T,3>& v) {
    
            using std::cos;
            using std::sqrt;
    
    
            Dune::FieldVector<T,3> vAxial = v.axial();
    
            T normV2 = vAxial.two_norm2();
    
            // Stabilization for small |v|
            T sin = sincHalfOfSquare(normV2);
    
            assert(!std::isnan(sin));
    
            q[0] = sin * vAxial[0];
            q[1] = sin * vAxial[1];
            q[2] = sin * vAxial[2];
    
    
            // The series expansion of cos(x) at x=0 is
            // 1 - x*x/2 + x*x*x*x/24 - ...
            // hence the series of cos(x/2) is
            // 1 - x*x/8 + x*x*x*x/384 - ...
            q[3] = (normV2 < 1e-4)
    
              ? 1 - normV2/8 + normV2*normV2 / 384-Dune::power(normV2,3)/46080 + Dune::power(normV2,4)/10321920
    
              : cos(sqrt(normV2)/2);
    
        /** \brief The exponential map from a given point $p \in SO(3)$.
    
         * \param v A tangent vector *at the identity*!
         */
    
        static Rotation<T,3> exp(const Rotation<T,3>& p, const SkewMatrix<T,3>& v) {
            Rotation<T,3> corr = exp(v);
    
        /** \brief The exponential map from a given point $p \in SO(3)$.
    
            There may be a more direct way to implement this
    
            \param v A tangent vector in quaternion coordinates
         */
    
        static Rotation<T,3> exp(const Rotation<T,3>& p, const Dune::FieldVector<T,4>& v) {
    
    
            using std::abs;
            using std::cos;
            using std::sqrt;
            assert( abs(p*v) < 1e-8 );
    
            const T norm2 = v.two_norm2();
    
            // The series expansion of cos(x) at x=0 is
            // 1 - x*x/2 + x*x*x*x/24 - ...
    
            T cosValue = (norm2 < 1e-5)
              ? 1 - norm2/2 + norm2*norm2 / 24 - Dune::power(norm2,3)/720+Dune::power(norm2,4)/40320
    
              : cos(sqrt(norm2));
            result *= cosValue;
    
            result.axpy(sincOfSquare(norm2), v);
            return result;
    
         /** \brief The exponential map from a given point $p \in SO(3)$.
    
            \param v A tangent vector.
         */
    
        static Rotation<T,3> exp(const Rotation<T,3>& p, const TangentVector& v) {
    
            // embedded tangent vector
            Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame();
            Quaternion<T> embeddedTangent;
            basis.mtv(v, embeddedTangent);
    
            return exp(p,embeddedTangent);
    
    
    
        /** \brief Compute tangent vector from given basepoint and skew symmetric matrix. */
    
        static TangentVector skewToTangentVector(const Rotation<T,3>& p, const SkewMatrix<T,3>& v ) {
    
    
            // embedded tangent vector at identity
            Quaternion<T> vAtIdentity(0);
    
            vAtIdentity[0] = 0.5*v.axial()[0];
            vAtIdentity[1] = 0.5*v.axial()[1];
            vAtIdentity[2] = 0.5*v.axial()[2];
    
    
            // multiply with base point to get real embedded tangent vector
    
            Quaternion<T> vQuat = ((Quaternion<T>) p).mult(vAtIdentity);
    
    
            //get basis of the tangent space
            Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame();
    
            // transform coordinates
            TangentVector tang;
            basis.mv(vQuat,tang);
    
            return tang;
        }
    
    
        /** \brief Compute skew matrix from given basepoint and tangent vector. */
    
        static SkewMatrix<T,3> tangentToSkew(const Rotation<T,3>& p, const TangentVector& tangent) {
    
            // embedded tangent vector
            Dune::FieldMatrix<T,3,4> basis = p.orthonormalFrame();
            Quaternion<T> embeddedTangent;
            basis.mtv(tangent, embeddedTangent);
    
            return tangentToSkew(p,embeddedTangent);
    
        /** \brief Compute skew matrix from given basepoint and an embedded tangent vector. */
    
        static SkewMatrix<T,3> tangentToSkew(const Rotation<T,3>& p, const EmbeddedTangentVector& q) {
    
            // left multiplication by the inverse base point yields a tangent vector at the identity
    
            Quaternion<T> vAtIdentity = p.inverse().mult(q);
    
            assert( std::abs(vAtIdentity[3]) < 1e-8 );
    
            SkewMatrix<T,3> skew;
            skew.axial()[0] = 2*vAtIdentity[0];
            skew.axial()[1] = 2*vAtIdentity[1];
            skew.axial()[2] = 2*vAtIdentity[2];
    
        /** \brief Derivative of the exponential map at the identity
         *
         * The exponential map at the identity is a map from a neighborhood of zero to the neighborhood of the identity rotation.
         *
         * \param v Where to evaluate the derivative of the (exponential map at the identity)
         */
    
        static Dune::FieldMatrix<T,4,3> Dexp(const SkewMatrix<T,3>& v) {
    
            using std::cos;
    
    
            Dune::FieldVector<T,3> vAxial = v.axial();
            T norm = vAxial.two_norm();
    
    
                    result[m][i] = (norm<1e-10)
    
                        /** \todo Isn't there a better way to implement this stably? */
    
                        ? T(0.5) * (i==m)
                        : 0.5 * cos(norm/2) * vAxial[i] * vAxial[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - vAxial[i]*vAxial[m]/(norm*norm));
    
                result[3][i] = - 0.5 * sincHalf(norm) * vAxial[i];
    
    
            }
            return result;
        }
    
        static void DDexp(const Dune::FieldVector<T,3>& v,
    
                          std::array<Dune::FieldMatrix<T,3,3>, 4>& result) {
    
            using std::cos;
            using std::sin;
    
    
    
                for (int m=0; m<4; m++)
                    result[m] = 0;
    
                for (int i=0; i<3; i++)
                    result[3][i][i] = -0.25;
    
    
            } else {
    
                for (int i=0; i<3; i++) {
    
                            result[m][i][j] = -0.25*sin(norm/2)*v[i]*v[j]*v[m]/(norm*norm*norm)
    
                                + ((i==j)*v[m] + (j==m)*v[i] + (i==m)*v[j] - 3*v[i]*v[j]*v[m]/(norm*norm))
    
                                * (0.5*cos(norm/2) - sincHalf(norm)) / (norm*norm);
    
                            * ( 0.5*cos(norm/2)*v[i]*v[j] + sin(norm/2) * ((i==j)*norm - v[i]*v[j]/norm));
    
        static Dune::FieldVector<T,3> expInv(const Rotation<T,3>& q) {
    
            // Due to numerical dirt, q[3] may be larger than 1.
    
            // In that case, use 1 instead of q[3].
            Dune::FieldVector<T,3> v;
            if (q[3] > 1.0) {
    
                v = 0;
    
            } else {
    
                using std::acos;
                T invSinc = 1/sincHalf(2*acos(q[3]));
    
                v[0] = q[0] * invSinc;
                v[1] = q[1] * invSinc;
                v[2] = q[2] * invSinc;
    
            }
            return v;
        }
    
        /** \brief The derivative of the inverse of the exponential map, evaluated at q */
    
        static Dune::FieldMatrix<T,3,4> DexpInv(const Rotation<T,3>& q) {
    
            // Compute v = exp^{-1} q
            Dune::FieldVector<T,3> v = expInv(q);
    
            // The derivative of exp at v
    
            Dune::FieldMatrix<T,4,3> A = Dexp(SkewMatrix<T,3>(v));
    
    
            // Compute the Moore-Penrose pseudo inverse  A^+ = (A^T A)^{-1} A^T
            Dune::FieldMatrix<T,3,3> ATA;
    
            for (int i=0; i<3; i++)
                for (int j=0; j<3; j++) {
                    ATA[i][j] = 0;
                    for (int k=0; k<4; k++)
                        ATA[i][j] += A[k][i] * A[k][j];
                }
    
            ATA.invert();
    
            Dune::FieldMatrix<T,3,4> APseudoInv;
            for (int i=0; i<3; i++)
                for (int j=0; j<4; j++) {
                    APseudoInv[i][j] = 0;
                    for (int k=0; k<3; k++)
                        APseudoInv[i][j] += ATA[i][k] * A[j][k];
                }
    
            return APseudoInv;
        }
    
    
        /** \brief The cayley mapping from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$.
    
         *
         *  The formula is taken from 'J.C.Simo, N.Tarnom, M.Doblare - Non-linear dynamics of
         *  three-dimensional rods:Exact energy and momentum conserving algorithms'
         *  (but the corrected version with 0.25 instead of 0.5 in the denominator)
         */
    
        static Rotation<T,3> cayley(const SkewMatrix<T,3>& s) {
            Rotation<T,3> q;
    
            Dune::FieldVector<T,3> vAxial = s.axial();
    
            Dune::FieldMatrix<T,3,3> mat = s.toMatrix();
            mat *= 0.5;
    
            Dune::FieldMatrix<T,3,3> skewSquare = mat;
            skewSquare.rightmultiply(mat);
    
            mat += skewSquare;
            mat *= 2/norm;
    
            for (int i=0;i<3;i++)
                mat[i][i] += 1;
    
            q.set(mat);
            return q;
        }
    
    
        /** \brief The inverse of the Cayley mapping.
    
         *
         *  The formula is taken from J.M.Selig - Cayley Maps for SE(3).
         */
    
        static SkewMatrix<T,3>  cayleyInv(const Rotation<T,3> q) {
    
            Dune::FieldMatrix<T,3,3> mat;
    
            // compute the trace of the rotation matrix
    
            T trace = -q[0]*q[0] -q[1]*q[1] -q[2]*q[2]+3*q[3]*q[3];
    
    
    Youett, Jonathan's avatar
    Youett, Jonathan committed
            if ( (trace+1)>1e-6 || (trace+1)<-1e-6) { // if this term doesn't vanish we can use a direct formula
    
                q.matrix(mat);
    
                Rotation<T,3>(q.inverse()).matrix(matT);
    
    Youett, Jonathan's avatar
    Youett, Jonathan committed
                mat *= 2/(1+trace);
    
            }
            else { // use the formula that involves the computation of an inverse
                Dune::FieldMatrix<T,3,3> inv;
    
                q.matrix(inv);
    
                for (int i=0;i<3;i++) {
                    inv[i][i] +=1;
                    notInv[i][i] -=1;
                }
                inv.invert();
                mat = notInv.leftmultiply(inv);
                mat *= 2;
            }
    
            // result is a skew symmetric matrix
    
            SkewMatrix<T,3> res;
    
            res.axial()[0] = mat[2][1];
            res.axial()[1] = mat[0][2];
    
    
            return res;
    
        static T distance(const Rotation<T,3>& a, const Rotation<T,3>& b) {
    
            // Distance in the unit quaternions: 2*arccos( ((a^{-1) b)_3 )
            // But note that (a^{-1}b)_3 is actually <a,b> (in R^4)
            T sp = a.globalCoordinates() * b.globalCoordinates();
    
    Oliver Sander's avatar
    Oliver Sander committed
    
    
            // Scalar product may be larger than 1.0, due to numerical dirt
    
            using std::acos;
            using std::min;
            T dist = 2*acos( min(sp,T(1.0)) );
    
    
            // Make sure we do the right thing if a and b are not in the same sheet
            // of the double covering of the unit quaternions over SO(3)
    
            return (dist>=M_PI) ? (2*M_PI - dist) : dist;
    
    Oliver Sander's avatar
    Oliver Sander committed
        }
    
    
        /** \brief Compute the vector in T_aSO(3) that is mapped by the exponential map
            to the geodesic from a to b
        */
    
        static EmbeddedTangentVector log(const Rotation<T,3>& a, const Rotation<T,3>& b) {
    
            // embedded tangent vector at identity
            Quaternion<T> v;
    
    
            Quaternion<T> diff = a;
            diff.invert();
            diff = diff.mult(b);
    
            // Compute the geodesical distance between a and b on SO(3)
    
            // Due to numerical dirt, diff[3] may be larger than 1.
    
            // In that case, use 1 instead of diff[3].
            if (diff[3] > 1.0) {
    
                v = 0;
    
            } else {
    
                // TODO: ADOL-C does not like this part of the code,
                // because arccos is not differentiable at -1 and 1.
    
                // (Even though the overall 'log' function is differentiable.)
    
                using std::acos;
                T dist = 2*acos( diff[3] );
    
    
                // Make sure we do the right thing if a and b are not in the same sheet
                // of the double covering of the unit quaternions over SO(3)
                if (dist>=M_PI) {
    
                    dist = 2*M_PI - dist;
    
                v[0] = 0.5 * diff[0] * invSinc;
                v[1] = 0.5 * diff[1] * invSinc;
                v[2] = 0.5 * diff[2] * invSinc;
                v[3] = 0;
    
            // multiply with base point to get real embedded tangent vector
            return ((Quaternion<T>) a).mult(v);
    
        /** \brief Compute the derivatives of the director vectors with respect to the quaternion coordinates
    
         * Let \f$ d_k(q) = (d_{k,1}, d_{k,2}, d_{k,3})\f$ be the k-th director vector at \f$ q \f$.
         * Then the return value of this method is
         * \f[ A_{ijk} = \frac{\partial d_{i,j}}{\partial q_k} \f]
         */
    
        void getFirstDerivativesOfDirectors(Tensor3<T,3, 3, 4>& dd_dq) const
    
            dd_dq[0][0] = { 2*q[0], -2*q[1], -2*q[2],  2*q[3]};
            dd_dq[0][1] = { 2*q[1],  2*q[0],  2*q[3],  2*q[2]};
            dd_dq[0][2] = { 2*q[2], -2*q[3],  2*q[0], -2*q[1]};
    
            dd_dq[1][0] = { 2*q[1],  2*q[0], -2*q[3], -2*q[2]};
            dd_dq[1][1] = {-2*q[0],  2*q[1], -2*q[2],  2*q[3]};
            dd_dq[1][2] = { 2*q[3],  2*q[2],  2*q[1],  2*q[0]};
    
            dd_dq[2][0] = { 2*q[2],  2*q[3],  2*q[0],  2*q[1]};
            dd_dq[2][1] = {-2*q[3],  2*q[2],  2*q[1], -2*q[0]};
            dd_dq[2][2] = {-2*q[0], -2*q[1],  2*q[2],  2*q[3]};
    
        /** \brief Compute the second derivatives of the director vectors with respect to the quaternion coordinates
    
         * Let \f$ d_k(q) = (d_{k,1}, d_{k,2}, d_{k,3})\f$ be the k-th director vector at \f$ q \f$.
         * Then the return value of this method is
         * \f[ A_{ijkl} = \frac{\partial^2 d_{i,j}}{\partial q_k \partial q_l} \f]
         */
    
        static void getSecondDerivativesOfDirectors(std::array<Tensor3<T,3, 4, 4>, 3>& dd_dq_dq)
    
    
            dd_dq_dq[0][0][0][0] =  2;  dd_dq_dq[0][0][1][1] = -2;  dd_dq_dq[0][0][2][2] = -2;  dd_dq_dq[0][0][3][3] =  2;
            dd_dq_dq[0][1][0][1] =  2;  dd_dq_dq[0][1][1][0] =  2;  dd_dq_dq[0][1][2][3] =  2;  dd_dq_dq[0][1][3][2] =  2;
            dd_dq_dq[0][2][0][2] =  2;  dd_dq_dq[0][2][1][3] = -2;  dd_dq_dq[0][2][2][0] =  2;  dd_dq_dq[0][2][3][1] = -2;
    
            dd_dq_dq[1][0][0][1] =  2;  dd_dq_dq[1][0][1][0] =  2;  dd_dq_dq[1][0][2][3] = -2;  dd_dq_dq[1][0][3][2] = -2;
            dd_dq_dq[1][1][0][0] = -2;  dd_dq_dq[1][1][1][1] =  2;  dd_dq_dq[1][1][2][2] = -2;  dd_dq_dq[1][1][3][3] =  2;
            dd_dq_dq[1][2][0][3] =  2;  dd_dq_dq[1][2][1][2] =  2;  dd_dq_dq[1][2][2][1] =  2;  dd_dq_dq[1][2][3][0] =  2;
    
            dd_dq_dq[2][0][0][2] =  2;  dd_dq_dq[2][0][1][3] =  2;  dd_dq_dq[2][0][2][0] =  2;  dd_dq_dq[2][0][3][1] =  2;
            dd_dq_dq[2][1][0][3] = -2;  dd_dq_dq[2][1][1][2] =  2;  dd_dq_dq[2][1][2][1] =  2;  dd_dq_dq[2][1][3][0] = -2;
            dd_dq_dq[2][2][0][0] = -2;  dd_dq_dq[2][2][1][1] = -2;  dd_dq_dq[2][2][2][2] =  2;  dd_dq_dq[2][2][3][3] =  2;
    
        }
    
    
        /** \brief Transform tangent vectors from quaternion representation to matrix representation
         *
         * This class represents rotations as unit quaternions, and therefore variations of rotations
         * (i.e., tangent vector) are represented in quaternion space, too.  However, some applications
         * require the tangent vectors as matrices. To obtain matrix coordinates we use the
         * chain rule, which means that we have to multiply the given derivative with
         * the derivative of the embedding of the unit quaternion into the space of 3x3 matrices.
         * This second derivative is almost given by the method getFirstDerivativesOfDirectors.
         * However, since the directors of a given unit quaternion are the _columns_ of the
         * corresponding orthogonal matrix, we need to invert the i and j indices
         *
         * As a typical GFE assembler will require this for several tangent vectors at once,
         * the implementation here is a vector one: It allows to treat several tangent vectors
         * together, which have to come as the columns of the `derivative` parameter.
         *
         * So, if I am not mistaken, result[i][j][k] contains \partial R_ij / \partial k
         *
         * \param derivative Tangent vector in quaternion coordinates
         * \returns DR Tangent vector in matrix coordinates
         */
        template <int blocksize>
        Tensor3<T,3,3,blocksize> quaternionTangentToMatrixTangent(const Dune::FieldMatrix<T,4,blocksize>& derivative) const
        {
            Tensor3<T,3,3,blocksize> result = T(0);
    
            Tensor3<T,3 , 3, 4> dd_dq;
            getFirstDerivativesOfDirectors(dd_dq);
    
            for (int i=0; i<3; i++)
                for (int j=0; j<3; j++)
                    for (int k=0; k<blocksize; k++)
                        for (int l=0; l<4; l++)
                            result[i][j][k] += dd_dq[j][i][l] * derivative[l][k];
    
            return result;
        }
    
    
        /** \brief Compute the derivative of the squared distance function with respect to the second argument
    
         * The squared distance function is
         * \f[ 4 \arccos^2 (|<p,q>|) \f]
         * Deriving this with respect to the second coordinate gives
         * \f[ 4 (\arccos^2)'(x)|_{x = |<p,q>|} * P_qp \f]
         * The whole thing has to be multiplied by -1 if \f$ <p,q> \f$ is negative
         */
    
        static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,3>& p,
    
                                                                          const Rotation<T,3>& q) {
    
            T sp = p.globalCoordinates() * q.globalCoordinates();
    
            // Compute the projection of p onto the tangent space of q
            EmbeddedTangentVector result = p;
            result.axpy(-1*(q*p), q);
    
            // The ternary operator comes from the derivative of the absolute value function
    
            using std::abs;
            result *= 4 * UnitVector<T,4>::derivativeOfArcCosSquared(abs(sp)) * ( (sp<0) ? -1 : 1 );
    
        /** \brief Compute the Hessian of the squared distance function keeping the first argument fixed */
    
        static Dune::SymmetricMatrix<T,4> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
    
            T sp = p.globalCoordinates() * q.globalCoordinates();
    
            EmbeddedTangentVector pProjected = q.projectOntoTangentSpace(p.globalCoordinates());
    
    
                for (int j=0; j<=i; j++)
                    A(i,j) = pProjected[i]*pProjected[j];
    
            using std::abs;
            A *= 4*UnitVector<T,4>::secondDerivativeOfArcCosSquared(abs(sp));
    
                for (int j=0; j<=i; j++)
                    Pq(i,j) = (i==j) - q.globalCoordinates()[i]*q.globalCoordinates()[j];
    
            A.axpy(-4* ((sp<0) ? -1 : 1) * UnitVector<T,4>::derivativeOfArcCosSquared(abs(sp))*sp, Pq);
    
        /** \brief Compute the mixed second derivate \partial d^2 / \partial dp dq */
    
        static Dune::FieldMatrix<T,4,4> secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
            T sp = p.globalCoordinates() * q.globalCoordinates();
    
            // Compute vector A (see notes)
            Dune::FieldMatrix<T,1,4> row;
            row[0] = q.projectOntoTangentSpace(p.globalCoordinates());
    
            EmbeddedTangentVector tmp = p.projectOntoTangentSpace(q.globalCoordinates());
            Dune::FieldMatrix<T,4,1> column;
            for (int i=0; i<4; i++)  // turn row vector into column vector
                column[i] = tmp[i];
    
            Dune::FieldMatrix<T,4,4> A;
            // A = row * column
            Dune::FMatrixHelp::multMatrix(column,row,A);
    
            using std::abs;
            A *= 4 * UnitVector<T,4>::secondDerivativeOfArcCosSquared(abs(sp));
    
    
            // Compute matrix B (see notes)
            Dune::FieldMatrix<T,4,4> Pp, Pq;
            for (int i=0; i<4; i++)
                for (int j=0; j<4; j++) {
                    Pp[i][j] = (i==j) - p.globalCoordinates()[i]*p.globalCoordinates()[j];
                    Pq[i][j] = (i==j) - q.globalCoordinates()[i]*q.globalCoordinates()[j];
                }
    
            Dune::FieldMatrix<T,4,4> B;
            Dune::FMatrixHelp::multMatrix(Pp,Pq,B);
    
            A.axpy(4 * ( (sp<0) ? -1 : 1) * UnitVector<T,4>::derivativeOfArcCosSquared(abs(sp)), B);
    
        /** \brief Compute the third derivative \partial d^3 / \partial dq^3
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Tensor3<T,4,4,4> thirdDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
            Tensor3<T,4,4,4> result;
    
            T sp = p.globalCoordinates() * q.globalCoordinates();
    
            // The projection matrix onto the tangent space at p and q
            Dune::FieldMatrix<T,4,4> Pq;
            for (int i=0; i<4; i++)
                for (int j=0; j<4; j++)
                    Pq[i][j] = (i==j) - q.globalCoordinates()[i]*q.globalCoordinates()[j];
    
            EmbeddedTangentVector pProjected = q.projectOntoTangentSpace(p.globalCoordinates());
    
            double plusMinus = (sp < 0) ? -1 : 1;
    
    
            using std::abs;
    
            for (int i=0; i<4; i++)
                for (int j=0; j<4; j++)
                    for (int k=0; k<4; k++) {
    
    
                        result[i][j][k] = plusMinus * UnitVector<T,4>::thirdDerivativeOfArcCosSquared(abs(sp)) * pProjected[i] * pProjected[j] * pProjected[k]
                                        - UnitVector<T,4>::secondDerivativeOfArcCosSquared(abs(sp)) * ((i==j)*sp + p.globalCoordinates()[i]*q.globalCoordinates()[j])*pProjected[k]
                                        - UnitVector<T,4>::secondDerivativeOfArcCosSquared(abs(sp)) * ((i==k)*sp + p.globalCoordinates()[i]*q.globalCoordinates()[k])*pProjected[j]
                                        - UnitVector<T,4>::secondDerivativeOfArcCosSquared(abs(sp)) * pProjected[i] * Pq[j][k] * sp
                                        + plusMinus * UnitVector<T,4>::derivativeOfArcCosSquared(abs(sp)) * ((i==j)*q.globalCoordinates()[k] + (i==k)*q.globalCoordinates()[j]) * sp
                                        - plusMinus * UnitVector<T,4>::derivativeOfArcCosSquared(abs(sp)) * p.globalCoordinates()[i] * Pq[j][k];
    
        /** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
    
        static Tensor3<T,4,4,4> thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(const Rotation<T,3>& p, const Rotation<T,3>& q) {
    
    
            Tensor3<T,4,4,4> result;
    
            T sp = p.globalCoordinates() * q.globalCoordinates();
    
            // The projection matrix onto the tangent space at p and q
            Dune::FieldMatrix<T,4,4> Pp, Pq;
            for (int i=0; i<4; i++)
                for (int j=0; j<4; j++) {
                    Pp[i][j] = (i==j) - p.globalCoordinates()[i]*p.globalCoordinates()[j];
                    Pq[i][j] = (i==j) - q.globalCoordinates()[i]*q.globalCoordinates()[j];
                }
    
            EmbeddedTangentVector pProjected = q.projectOntoTangentSpace(p.globalCoordinates());
            EmbeddedTangentVector qProjected = p.projectOntoTangentSpace(q.globalCoordinates());
    
            Tensor3<T,4,4,4> derivativeOfPqOTimesPq;
            for (int i=0; i<4; i++)
                for (int j=0; j<4; j++)
                    for (int k=0; k<4; k++) {
                        derivativeOfPqOTimesPq[i][j][k] = 0;
                        for (int l=0; l<4; l++)
                            derivativeOfPqOTimesPq[i][j][k] += Pp[i][l] * (Pq[j][l]*pProjected[k] + pProjected[j]*Pq[k][l]);
                    }
    
            double plusMinus = (sp < 0) ? -1 : 1;
    
    
            using std::abs;
            result = plusMinus * UnitVector<T,4>::thirdDerivativeOfArcCosSquared(abs(sp))         * Tensor3<T,4,4,4>::product(qProjected,pProjected,pProjected)
                     + UnitVector<T,4>::secondDerivativeOfArcCosSquared(abs(sp))      * derivativeOfPqOTimesPq
                     - UnitVector<T,4>::secondDerivativeOfArcCosSquared(abs(sp)) * sp * Tensor3<T,4,4,4>::product(qProjected,Pq)
                     - plusMinus * UnitVector<T,4>::derivativeOfArcCosSquared(abs(sp))            * Tensor3<T,4,4,4>::product(qProjected,Pq);
    
        /** \brief Interpolate between two rotations */
    
        static Rotation<T,3> interpolate(const Rotation<T,3>& a, const Rotation<T,3>& b, T omega) {
    
            EmbeddedTangentVector v = log(a,b);
            return exp(a, omega*v);
    
        /** \brief Interpolate between two rotations
    
        static Quaternion<T> interpolateDerivative(const Rotation<T,3>& a, const Rotation<T,3>& b,
    
            // Compute log on T_a SO(3)
            SkewMatrix<T,3> xi = log(a,b);
    
            // //////////////////////////////////////////////////////////////
            //   v now contains the derivative at 'a'.  The derivative at
            //   the requested site is v pushed forward by Dexp.
            // /////////////////////////////////////////////////////////////
    
    
            Dune::FieldMatrix<T,4,3> diffExp = Dexp(v);
    
            diffExp.umv(xi.axial(),result);
    
    
            return a.Quaternion<T>::mult(result);
        }
    
        /** \brief Return the corresponding orthogonal matrix */
        void matrix(Dune::FieldMatrix<T,3,3>& m) const {
    
            m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
            m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
    
            m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
            m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
    
            m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
            m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
            m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
    
        }
    
    
        /** \brief Derivative of the map from unit quaternions to orthogonal matrices
         */
        static Tensor3<T,3,3,4> derivativeOfQuaternionToMatrix(const Dune::FieldVector<T,4>& p)
        {
          Tensor3<T,3,3,4> result;
    
          result[0][0] = { 2*p[0], -2*p[1], -2*p[2],  2*p[3]};
          result[0][1] = { 2*p[1],  2*p[0], -2*p[3], -2*p[2]};
          result[0][2] = { 2*p[2],  2*p[3],  2*p[0],  2*p[1]};
    
          result[1][0] = { 2*p[1],  2*p[0],  2*p[3],  2*p[2]};
          result[1][1] = {-2*p[0],  2*p[1], -2*p[2],  2*p[3]};
          result[1][2] = {-2*p[3],  2*p[2],  2*p[1], -2*p[0]};
    
          result[2][0] = { 2*p[2], -2*p[3],  2*p[0], -2*p[1]};
          result[2][1] = { 2*p[3],  2*p[2],  2*p[1],  2*p[0]};
          result[2][2] = {-2*p[0], -2*p[1],  2*p[2],  2*p[3]};
    
          return result;
        }
    
    
        /** \brief Set rotation from orthogonal matrix